Reactivation of Recall-Induced Neurons in the Infralimbic Cortex and the Basolateral Amygdala After Remote Fear Memory Attenuation
Related publications (41)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The subject of the book is the specificity of social, national-cultural and historical self-consciousness of the "educated class" of the former Russian Empire and the former Soviet Union. The phenomenon of "intelligentsia" is considered in the spirit of V ...
A memory engram is thought to be the physical substrate of the memory trace within the brain, which is generally depicted as a neuronal ensemble activated by learning to fire together during encoding and retrieval. It has been postulated that engram cell e ...
All functions we use in our everyday life depend on a complex interplay between both cortical and subcortical brain areas, communicating in between each others. When a region is affected by either an accident, aging or neurodegenerative diseases, the whole ...
Traumatic events generate some of the most enduring memories, yet little is known about how long-lasting fear memories can be attenuated. In this review, we collect the surprisingly sparse evidence on remote fear memory attenuation from both animal and hum ...
Long-lasting memories are stored in a small set of neurons scattered throughout the brain, so-called engram cells. To define a stable engram each region of the brain involved in memory storage recruits between 5 and 20 percent of excitatory neurons. In par ...
The formation and storage of memories has been under deep investigation for several decades. Nevertheless, the precise contribution of each brain region involved in this process and the interplay between them across memory consolidation is still largely de ...
Memory formation and storage rely on multiple interconnected brain areas, the contribution of which varies during memory consolidation. The medial prefrontal cortex, in particular the prelimbic cortex (PL), was traditionally found to be involved in remote ...
Long-term memory formation relies on synaptic plasticity, neuronal activity-dependent gene transcription, and epigenetic modifications. Multiple studies have shown that HDAC inhibitor (HDACi) treatments can enhance individual aspects of these processes and ...
Learning and memory rely on synaptic communication in which intracellular signals are transported to the nucleus to stimulate transcriptional activation. Memory induced transcriptional increases are accompanied by alterations to the epigenetic landscape an ...
In the present work, we approach two key aspects of memory formation: associative memory and synaptic consolidation.
The storage of associative memory is commonly related to the medial temporal lobe in humans. Experimental evidence shows that the memories ...