Publication

Improvements on the uniformity of large-area microlens arrays in Fused Silica

Abstract

The uniformity of large microlens arrays in Fused Silica is governed by the production process. It comprises photolithographic patterning of a spin-coated layer of photoresist on a 200mm wafer with a molten resist reflow process and subsequent dry etching. By investigating systematic influences throughout the production process we show how to steer the lens production process with a single degree of freedom to improve the uniformity of the final microlens array. To enable this we describe the optical performance of microlenses with only one parameter: the principal aberration component. It is the result of principal component analysis of the chosen optical merit function. We present the case of manufactured microlens arrays with element sizes > 100 mm x 100 mm where uniformity was improved by a factor of 2. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.