Publication

Magic Prints: Image-Changing Prints Observed under Visible and 365 nm UV Light

Petar Pjanic, Marjan Shahpaski
2019
Journal paper
Abstract

In this paper we propose a novel layered-printing method consisting of superposed visible cmy and invisible fluorescent ultraviolet (UV) rgb inks. Our approach can be used to generate a variety of visual color-alteration effects such as revealing two completely distinct images when the print is illuminated with either standard visible or 365 nm ultraviolet (UV) light (Figure 1). This is achieved by computing the maximum achievable color gamuts for both illumination conditions, generating accurate estimates, and applying a spatial-varying gamut mapping to minimize potential ghosting artifacts and calculate the optimal ink surface coverages that, when printed, generate the desired image-alteration effect. Our method uses invisible UV-rgb fluorescent inks which are printed onto a transparent film. It is placed on top of a visible print consisting of standard cmy inks. By separating the UV and the visible inks using the transparent film, physical mixing of the two different ink types is avoided. This significantly increases the intensity of the fluorescent emission resulting in stronger and more vivid color-alteration effects. Besides the revealing of two different images, the same method can be applied for other use cases as well, such as enhancing or adding specific parts to an image under one illumination condition, generating personalized document security features, or aiding color-blind people in color distinction. (C) 2019 Society for Imaging Science and Technology.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (33)
RGB color model
The RGB color model is an additive color model in which the red, green and blue primary colors of light are added together in various ways to reproduce a broad array of colors. The name of the model comes from the initials of the three additive primary colors, red, green, and blue. The main purpose of the RGB color model is for the sensing, representation, and display of images in electronic systems, such as televisions and computers, though it has also been used in conventional photography.
Ultraviolet
Ultraviolet (UV) is a form of electromagnetic radiation with wavelength shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight, and constitutes about 10% of the total electromagnetic radiation output from the Sun. It is also produced by electric arcs; Cherenkov radiation; and specialized lights; such as mercury-vapor lamps, tanning lamps, and black lights. Although long-wavelength ultraviolet is not considered an ionizing radiation because its photons lack the energy to ionize atoms, it can cause chemical reactions and causes many substances to glow or fluoresce.
Cyan
Cyan (ˈsaɪ.ən,_-æn) is the color between green and blue on the visible spectrum of light. It is evoked by light with a predominant wavelength between 490 and 520 nm, between the wavelengths of green and blue. In the subtractive color system, or CMYK color model, which can be overlaid to produce all colors in paint and color printing, cyan is one of the primary colors, along with magenta and yellow. In the additive color system, or RGB color model, used to create all the colors on a computer or television display, cyan is made by mixing equal amounts of green and blue light.
Show more
Related publications (42)

Multi-User Precoder Designs for RGB Visible Light Communication Systems

Roser Vinals Terres

In this paper, we design linear precoders for the downlink of a visible light communication (VLC) system that simultaneously serves multiple users. Instead of using phosphor-coated white light-emitting diodes (PWLEDs), we focus on Red-Green-Blue light-emit ...
MDPI2020

Silicon nanostructures for bright field full color prints

Jürgen Brugger, Valentin Flauraud, Miguel Arnold Reyes

Nanoscale color printing has recently emerged as a unique alternative to traditional pigments by providing record spatial resolution, angular independent, durable and single material colors. Widely based on plasmonic nanostructures, numerous efforts in the ...
Amer Chemical Soc2017

Color changing effects with cross-halftone prints on metal

Roger Hersch, Petar Pjanic

We propose new methods for creating color varying prints with classical cyan, magenta, yellow inks on a metallic substrate. We use a special crossline halftone with optimized surface coverages of the inks to create color prints on a metallic surface whose ...
2017
Show more
Related MOOCs (2)
Introduction to Geographic Information Systems (part 2)
Ce cours constitue la seconde partie d'un enseignement consacré aux bases théoriques et pratiques des systèmes d’information géographique. Il propose une introduction aux systèmes d’information géogra
Introduction to Geographic Information Systems (part 2)
Ce cours constitue la seconde partie d'un enseignement consacré aux bases théoriques et pratiques des systèmes d’information géographique. Il propose une introduction aux systèmes d’information géogra

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.