**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Unique decomposition of homogeneous languages and application to isothetic regions

Abstract

A language is said to be homogeneous when all its words have the same length. Homogeneous languages thus form a monoid under concatenation. It becomes freely commutative under the simultaneous actions of every permutation group G(n) on the collection of homogeneous languages of length n is an element of N. One recovers the isothetic regions from (Haucourt 2017, to appear (online since October 2017)) by considering the alphabet of connected subsets of the space vertical bar G vertical bar, viz the geometric realization of a finite graph G. Factoring the geometric model of a conservative program amounts to parallelize it, and there exists an efficient factoring algorithm for isothetic regions. Yet, from the theoretical point of view, one wishes to go beyond the class of conservative programs, which implies relaxing the finiteness hypothesis on the graph G. Provided that the collections of n-dimensional isothetic regions over G (denoted by R-n vertical bar G vertical bar) are co -unital distributive lattices, the prime decomposition of isothetic regions is given by an algorithm which is, unfortunately, very inefficient. Nevertheless, if the collections R-n vertical bar G vertical bar satisfy the stronger property of being Boolean algebras, then the efficient factoring algorithm is available again. We relate the algebraic properties of the collections R-n vertical bar G vertical bar to the geometric properties of the space I GI. On the way, the algebraic structure R-n vertical bar G vertical bar is proven to be the universal tensor product, in the category of semilattices with zero, of n copies of the algebraic structure R-1 vertical bar G vertical bar.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (22)

Related publications (58)

Related concepts (62)

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 2)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Planar graph

In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. Such a drawing is called a plane graph or planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points.

Graph (discrete mathematics)

In discrete mathematics, and more specifically in graph theory, a graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called vertices (also called nodes or points) and each of the related pairs of vertices is called an edge (also called link or line). Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges.

Lattice graph

In graph theory, a lattice graph, mesh graph, or grid graph is a graph whose drawing, embedded in some Euclidean space \mathbb{R}^n, forms a regular tiling. This implies that the group of bijective transformations that send the graph to itself is a lattice in the group-theoretical sense. Typically, no clear distinction is made between such a graph in the more abstract sense of graph theory, and its drawing in space (often the plane or 3D space). This type of graph may more shortly be called just a lattice, mesh, or grid.

We examine the connection of two graph parameters, the size of a minimum feedback arcs set and the acyclic disconnection. A feedback arc set of a directed graph is a subset of arcs such that after deletion the graph becomes acyclic. The acyclic disconnecti ...

Giovanni De Micheli, Alessandro Tempia Calvino, Gianluca Radi

Technology mapping transforms a technology-independent representation into a technology-dependent one given a library of cells. This process is performed by means of local replacements that are extracted by matching sections of the subject graph to library ...

2024An integer linear program is a problem of the form max{c^T x : Ax=b, x >= 0, x integer}, where A is in Z^(n x m), b in Z^m, and c in Z^n.Solving an integer linear program is NP-hard in general, but there are several assumptions for which it becomes fixed p ...