Creation Of An Openfoam Fuel Performance Class Based On Fred And Integration Into The Gen-Foam Multi-Physics Code
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
During the past ten years, different independent factors, such as the rapidly increasing worldwide demand in energy, societal concerns about greenhouse gas emissions, and the high and volatile prices for fossil fuels, have contributed to the renewed intere ...
Gas cooling in nuclear power plants (NPPs) has a long history, the corresponding reactor types developed in France, the UK and the US having been thermal neutron-spectrum systems using graphite as the moderator. The majority of NPPs worldwide, however, are ...
Miniature and sub-miniature samples were used for determination of mechanical properties of materials for advanced fission plants. Results from indentation and focused ion beam prepared micro-samples, punch tests and thin strip (irradiation) creep tests ar ...
The safe and economic operation of nuclear power plants (NPPs) requires that the behaviour and performance of the fuel can be calculated reliably over its expected lifetime. This requires highly developed codes that treat the nuclear fuel in a general mann ...
The FAST code system is a general tool for analyzing advanced reactors from the viewpoint of the static and dynamic behavior of the whole reactor system. It includes an integrated three-dimensional representation of the core neutronics, appropriate modelin ...
The increasing complexity and heterogeneity of modern light water reactor (LWR) fuel assemblies impose new challenges to current reactor physics codes in terms of maintaining and improving the quality of neutronics predictions for the core. In particular, ...
The Paul Scherrer Institute used to be very active in fuel fabrication R and D using the internal gelation process, which is a promising production method for spherical nuclear fuel. Such fuel kernels can be directly packed in a cylindrical cladding (a sph ...
Until about the year 2030, current-day nuclear power plants (NPPs) will be replaced by so-called Gen-III or Gen-III+ units, which are mainly based on light water reactor technology. The principal new features are increased safety and improved economical ef ...
The present paper is related to the design and neutronic characterization of the principal control assembly system for the reference large (2400 MWth) Generation IV gas-cooled fast reactor (GFR), which makes use of ceramic-ceramic (CERCER) plate-type fuel- ...
The FAST code system is currently being developed and used at the Paul Scherrer Institut for static and transient analysis of the main Generation 4 fast-spectrum reactor concepts: sodium-, helium-, and gas-cooled fast reactors. The code system includes the ...