A Constant-Factor Approximation Algorithm for the Asymmetric Traveling Salesman Problem
Related publications (37)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this thesis we give new algorithms for two fundamental graph problems. We develop novel ways of using linear programming formulations, even exponential-sized ones, to extract structure from problem instances and to guide algorithms in making progress. S ...
An integer linear program is a problem of the form max{c^T x : Ax=b, x >= 0, x integer}, where A is in Z^(n x m), b in Z^m, and c in Z^n.Solving an integer linear program is NP-hard in general, but there are several assumptions for which it becomes fixed p ...
Knapsack problems give a simple framework for decision making. A classical example is the min-knapsack problem (MinKnap): choose a subset of items with minimum total cost, whose total profit is above a given threshold. While this model successfully general ...
An instance of colorful k-center consists of points in a metric space that are colored red or blue, along with an integer k and a coverage requirement for each color. The goal is to find the smallest radius ρ such that there exist balls of radius ρ around ...
The dynamic facility location problem is a generalization of the classic facility location problem proposed by Eisenstat, Mathieu, and Schabanel to model the dynamics of evolving social/infrastructure networks. The generalization lies in that the distance ...
Many of the currently best-known approximation algorithms for NP-hard optimization problems are based on Linear Programming (LP) and Semi-definite Programming (SDP) relaxations. Given its power, this class of algorithms seems to contain the most favourable ...
The vertex cover problem is one of the most important and intensively studied combinatorial optimization problems. Khot and Regev [Khot S, Regev O (2008) Vertex cover might be hard to approximate to within 2 - epsilon. J. Comput. System Sci. 74(3): 335-349 ...
An instance of colorful k-center consists of points in a metric space that are colored red or blue, along with an integer k and a coverage requirement for each color. The goal is to find the smallest radius rho such that there exist balls of radius rho aro ...
Clustering is a classic topic in combinatorial optimization and plays a central role in many areas, including data science and machine learning. In this thesis, we first focus on the dynamic facility location problem (i.e., the facility location problem in ...
Initially developed for the min-knapsack problem, the knapsack cover inequalities are used in the current best relaxations for numerous combinatorial optimization problems of covering type. In spite of their widespread use, these inequalities yield linear ...