Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A drawing of a graph in the plane is called a thrackle if every pair of edges meets precisely once, either at a common vertex or at a proper crossing. Let t(n) denote the maximum number of edges that a thrackle of n vertices can have. According to a 40 yea ...
Starting from the basic problem of reconstructing a 2-dimensional image given by its projections on two axes, one associates a model of edge coloring in a complete bipartite graph. The complexity of the case with k=3 colors is open. Variations and special ...
Let G be a graph with n vertices and ea parts per thousand yen4n edges, drawn in the plane in such a way that if two or more edges (arcs) share an interior point p, then they properly cross one another at p. It is shown that the number of crossing points, ...
We consider right angle crossing (RAC) drawings of graphs in which the edges are represented by polygonal arcs and any two edges can cross only at a right angle. We show that if a graph with n vertices admits a RAC drawing with at most 1 bend or 2 bends pe ...
Let G = (V, E) be a graph with n vertices and m >= 4n edges drawn in the plane. The celebrated Crossing Lemma states that G has at least Omega(m(3)/n(2)) pairs of crossing edges; or equivalently, there is an edge that crosses Omega(m(2)/n(2)) other edges. ...
We are interested in coloring the vertices of a mixed graph, i.e., a graph containing edges and arcs. We consider two different coloring problems: in the first one we want adjacent vertices to have different colors and the tail of an arc to get a color str ...
Extensions and variations of the basic problem of graph coloring are introduced. The problem consists essentially in finding in a graph G a k-coloring, i.e., a partition V-1,...,V-k of the vertex set of G such that, for some specified neighborhood (N) over ...
Graph theory is an important topic in discrete mathematics. It is particularly interesting because it has a wide range of applications. Among the main problems in graph theory, we shall mention the following ones: graph coloring and the Hamiltonian circuit ...
Gossip algorithms have recently received significant attention, mainly because they constitute simple and robust mes- sage-passing schemes for distributed information processing over networks. However, for many topologies that are realistic for wire- less ...
Institute of Electrical and Electronics Engineers2010
We show that every graph G with maximum degree three has a straight-line drawing in the plane using edges of at most five different slopes. Moreover, if G is connected and has at least one vertex of degree less than three, then four directions suffice. ...