Classical orthogonal polynomialsIn mathematics, the classical orthogonal polynomials are the most widely used orthogonal polynomials: the Hermite polynomials, Laguerre polynomials, Jacobi polynomials (including as a special case the Gegenbauer polynomials, Chebyshev polynomials, and Legendre polynomials). They have many important applications in such areas as mathematical physics (in particular, the theory of random matrices), approximation theory, numerical analysis, and many others.
Lagrange polynomialIn numerical analysis, the Lagrange interpolating polynomial is the unique polynomial of lowest degree that interpolates a given set of data. Given a data set of coordinate pairs with the are called nodes and the are called values. The Lagrange polynomial has degree and assumes each value at the corresponding node, Although named after Joseph-Louis Lagrange, who published it in 1795, the method was first discovered in 1779 by Edward Waring. It is also an easy consequence of a formula published in 1783 by Leonhard Euler.
Chebyshev distanceIn mathematics, Chebyshev distance (or Tchebychev distance), maximum metric, or L∞ metric is a metric defined on a vector space where the distance between two vectors is the greatest of their differences along any coordinate dimension. It is named after Pafnuty Chebyshev. It is also known as chessboard distance, since in the game of chess the minimum number of moves needed by a king to go from one square on a chessboard to another equals the Chebyshev distance between the centers of the squares, if the squares have side length one, as represented in 2-D spatial coordinates with axes aligned to the edges of the board.
Marcinkiewicz interpolation theoremIn mathematics, the Marcinkiewicz interpolation theorem, discovered by , is a result bounding the norms of non-linear operators acting on Lp spaces. Marcinkiewicz' theorem is similar to the Riesz–Thorin theorem about linear operators, but also applies to non-linear operators. Let f be a measurable function with real or complex values, defined on a measure space (X, F, ω).