MHD Stability and Energy Principle for Two-Dimensional Equilibria without Assumption of Nested Magnetic Surfaces
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Almost since the first density profile measurements were made in the scrape-off layer (SOL) of the early tokamaks, it has been recognized that the rate of particle transport perpendicular to magnetic surfaces exceeds that expected on the basis of classical ...
Examination of radial electric field (E,.) profiles in the scrape-off layer (SOL) of ASDEX Upgrade (AUG) and JET revealed large discrepancies between 2D fluid edge modelling and experiment. Experimental profiles of plasma potential (V-p) in the outer (low ...
The ability of ITER electron cyclotron (EC) wave launchers to drive localized current at various plasma locations is analyzed by means of beam-tracing codes, looking at extended physics application of EC current drive in ITER and at possible synergy betwee ...
Active control of the resistive wall mode has been considered as an alternative way, besides passive control by plasma rotation, to stabilize the mode in advanced scenarios in ITER. We show that a significant improvement of the feedback system is achievabl ...
Progress in the area of MHD stability and disruptions, since the publication of the 1999 ITER Physics Basis document (1999 Nucl. Fusion 39 2137-2664), is reviewed. Recent theoretical and experimental research has made important advances in both understandi ...
The radial electric field in known to be one of the drivers of parallel ion flow in the SOL. It contributes to the ion Pfirsch-Schluter flow and also determines the 'return parallel flow' that can arise to compensate poloidal E x B drift. It was establishe ...
Magnetohydrodynamic (MHD) instabilities and plasma rotation have various impacts on particle and thermal transport in toroidal plasmas. MHD instabilities degrade the confinement, limit the maximum achievable plasma pressure, and can lead to plasma disrupti ...
In magnetic confinement devices, the inhomogeneity of the confining magnetic field along a magnetic field line generates the trapping of particles (with low ratio of parallel to perpendicular velocities) within local magnetic wells. One of the consequences ...
The understanding and predictive capability of transport physics and plasma confinement is reviewed from the perspective of achieving reactor-scale burning plasmas in the ITER tokamak, for both core and edge plasma regions. Very considerable progress has b ...
Particle flow measurements parallel to the total magnetic field direction have been obtained for the first time in the TCV tokamak scrape-off layer. The plasma shape flexibility of TCV, coupled with carefully matched ohmic diverted discharges in forward an ...