Plug and playIn computing, a plug and play (PnP) device or computer bus is one with a specification that facilitates the recognition of a hardware component in a system without the need for physical device configuration or user intervention in resolving resource conflicts. The term "plug and play" has since been expanded to a wide variety of applications to which the same lack of user setup applies.
Detection theoryDetection theory or signal detection theory is a means to measure the ability to differentiate between information-bearing patterns (called stimulus in living organisms, signal in machines) and random patterns that distract from the information (called noise, consisting of background stimuli and random activity of the detection machine and of the nervous system of the operator). In the field of electronics, signal recovery is the separation of such patterns from a disguising background.
Linear regressionIn statistics, linear regression is a linear approach for modelling the relationship between a scalar response and one or more explanatory variables (also known as dependent and independent variables). The case of one explanatory variable is called simple linear regression; for more than one, the process is called multiple linear regression. This term is distinct from multivariate linear regression, where multiple correlated dependent variables are predicted, rather than a single scalar variable.
Least squaresThe method of least squares is a standard approach in regression analysis to approximate the solution of overdetermined systems (sets of equations in which there are more equations than unknowns) by minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each individual equation. The most important application is in data fitting.
Phi coefficientIn statistics, the phi coefficient (or mean square contingency coefficient and denoted by φ or rφ) is a measure of association for two binary variables. In machine learning, it is known as the Matthews correlation coefficient (MCC) and used as a measure of the quality of binary (two-class) classifications, introduced by biochemist Brian W. Matthews in 1975. Introduced by Karl Pearson, and also known as the Yule phi coefficient from its introduction by Udny Yule in 1912 this measure is similar to the Pearson correlation coefficient in its interpretation.
Maximum likelihood estimationIn statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference.
Pointwise convergenceIn mathematics, pointwise convergence is one of various senses in which a sequence of functions can converge to a particular function. It is weaker than uniform convergence, to which it is often compared. Suppose that is a set and is a topological space, such as the real or complex numbers or a metric space, for example. A net or sequence of functions all having the same domain and codomain is said to converge pointwise to a given function often written as if (and only if) The function is said to be the pointwise limit function of the Sometimes, authors use the term bounded pointwise convergence when there is a constant such that .
Benchmark (computing)In computing, a benchmark is the act of running a computer program, a set of programs, or other operations, in order to assess the relative performance of an object, normally by running a number of standard tests and trials against it. The term benchmark is also commonly utilized for the purposes of elaborately designed benchmarking programs themselves. Benchmarking is usually associated with assessing performance characteristics of computer hardware, for example, the floating point operation performance of a CPU, but there are circumstances when the technique is also applicable to software.
Compact convergenceIn mathematics compact convergence (or uniform convergence on compact sets) is a type of convergence that generalizes the idea of uniform convergence. It is associated with the compact-open topology. Let be a topological space and be a metric space. A sequence of functions is said to converge compactly as to some function if, for every compact set , uniformly on as . This means that for all compact , If and with their usual topologies, with , then converges compactly to the constant function with value 0, but not uniformly.
ComputingComputing is any goal-oriented activity requiring, benefiting from, or creating computing machinery. It includes the study and experimentation of algorithmic processes, and development of both hardware and software. Computing has scientific, engineering, mathematical, technological and social aspects. Major computing disciplines include computer engineering, computer science, cybersecurity, data science, information systems, information technology, digital art and software engineering.