Publication

Where are the missing gene defects in inherited retinal disorders? Intronic and synonymous variants contribute at least to 4% of CACNA1F-mediated inherited retinal disorders

Vincent Meyer
2019
Journal paper
Abstract

Inherited retinal disorders (IRD) represent clinically and genetically heterogeneous diseases. To date, pathogenic variants have been identified in similar to 260 genes. Albeit that many genes are implicated in IRD, for 30-50% of the cases, the gene defect is unknown. These cases may be explained by novel gene defects, by overlooked structural variants, by variants in intronic, promoter or more distant regulatory regions, and represent synonymous variants of known genes contributing to the dysfunction of the respective proteins. Patients with one subgroup of IRD, namely incomplete congenital stationary night blindness (icCSNB), show a very specific phenotype. The major cause of this condition is the presence of a hemizygous pathogenic variant in CACNA1F. A comprehensive study applying direct Sanger sequencing of the gene-coding regions, exome and genome sequencing applied to a large cohort of patients with a clinical diagnosis of icCSNB revealed indeed that seven of the 189 CACNA1F-related cases have intronic and synonymous disease-causing variants leading to missplicing as validated by minigene approaches. These findings highlight that gene-locus sequencing may be a very efficient method in detecting disease-causing variants in clinically well-characterized patients with a diagnosis of IRD, like icCSNB.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (34)
Exome sequencing
Exome sequencing, also known as whole exome sequencing (WES), is a genomic technique for sequencing all of the protein-coding regions of genes in a genome (known as the exome). It consists of two steps: the first step is to select only the subset of DNA that encodes proteins. These regions are known as exons—humans have about 180,000 exons, constituting about 1% of the human genome, or approximately 30 million base pairs. The second step is to sequence the exonic DNA using any high-throughput DNA sequencing technology.
Whole genome sequencing
Whole genome sequencing (WGS), also known as full genome sequencing, complete genome sequencing, or entire genome sequencing, is the process of determining the entirety, or nearly the entirety, of the DNA sequence of an organism's genome at a single time. This entails sequencing all of an organism's chromosomal DNA as well as DNA contained in the mitochondria and, for plants, in the chloroplast. Whole genome sequencing has largely been used as a research tool, but was being introduced to clinics in 2014.
Shotgun sequencing
In genetics, shotgun sequencing is a method used for sequencing random DNA strands. It is named by analogy with the rapidly expanding, quasi-random shot grouping of a shotgun. The chain-termination method of DNA sequencing ("Sanger sequencing") can only be used for short DNA strands of 100 to 1000 base pairs. Due to this size limit, longer sequences are subdivided into smaller fragments that can be sequenced separately, and these sequences are assembled to give the overall sequence.
Show more
Related publications (43)

An Introduction to MPEG-G: The First Open ISO/IEC Standard for the Compression and Exchange of Genomic Sequencing Data

Marco Mattavelli

The development and progress of high-throughput sequencing technologies have transformed the sequencing of DNA from a scientific research challenge to practice. With the release of the latest generation of sequencing machines, the cost of sequencing a whol ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2021

Toward a mechanistic understanding of variable chromatin modules

Gerard Llimos Aubach

Our genome is a long sequence of DNA that contains all the information to be able to constitute a living organism like us, similarly to what the letters in a book do to create a story. This sequence, which is a stretch of molecules called nucleotides, is a ...
EPFL2021

Variants in USP48 encoding ubiquitin hydrolase are associated with autosomal dominant non-syndromic hereditary hearing loss

Nicolas Jean Philippe Guex

Non-Syndromic Hereditary Hearing Loss (NSHHL) is a genetically heterogeneous sensory disorder with about 120 genes already associated. Through exome sequencing (ES) and data aggregation, we identified a family with six affected individuals and one unrelate ...
2021
Show more
Related MOOCs (12)
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Genetics and Brain Development
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.