Chiral Spin Liquids in Triangular-LatticeSU(N)Fermionic Mott Insulators with Artificial Gauge Fields
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
From recent advances in solid state physics, a novel material classification scheme has evolved
which is based on the concept of topology and provides an understanding of different phenomena
ranging from quantum transport to unusual flavors of superconduct ...
Using the Matrix Product State framework, we generalize the Affleck-Kennedy-Lieb-Tasaki (AKLT) construction to one-dimensional spin liquids with global color SU(N) symmetry, finite correlation lengths, and edge states that can belong to any self-conjugate ...
The topology of the electron wavefunctions in certain band insulators can give rise to novel topological phases. Materials harbouring such topological phases are termed topological insulators (TI). A gapped bulk electronic spectrum, described by a topologi ...
The first part of this thesis presents the theoretical study of an anomaly of unknown origin in the excitation spectrum of the Quantumspin-1/2 Heisenberg Square lattice Anti-Ferromagnet. The anomaly manifests itself in Inelastic Neutron Scattering data for ...
In this thesis I study the synthesis and basic physical properties characterization on 3d, 4d and 5d transition metal compounds. Great success has been obtained in 3d transition metal compounds, in which the electric states are well localized due t ...
Understanding and controlling the electronic structure of thin layers of quantum materials is a crucial first step towards designing heterostructures where new phases and phenomena, including the metal-insulator transition (MIT), emerge. Here, we demonstra ...
Using determinant quantum Monte Carlo (DQMC) simulations, we systematically study the doping dependence of the crossover from one to two dimensions and its impact on the magnetic properties of the Hubbard model. A square lattice of chains is used, in which ...
The topology of a topological material can be encoded in its surface states. These surface states can only be removed by a bulk topological quantum phase transition into a trivial phase. Here we use photoemission spectroscopy to image the formation of prot ...
From cosmology to the microscopic scales of the quantum world, the study of topological excitations is essential for the understanding of phase conformation and phase transitions. Quantum fluids are convenient systems to investigate topological entities be ...
Topological Kondo insulators have been proposed as a new class of topological insulators in which non-trivial surface states reside in the bulk Kondo band gap at low temperature due to strong spin-orbit coupling. In contrast to other three-dimensional topo ...