Stabilization of the chiral phase of theSU(6m)Heisenberg model on the honeycomb lattice withmparticles per site formlarger than 1
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Neutron spectroscopy on the classical triangular-lattice frustrated antiferromagnet h-YMnO3 reveals diffuse, gapless magnetic excitations present both far below and above the ordering temperature. The correlation length of the excitations increases as the ...
We reveal an intriguing anomaly in the temperature dependence of the specific heat of a one-dimensional Bose gas. The observed peak holds for arbitrary interaction and remembers a superfluid-to-normal phase transition in higher dimensions, but phase transi ...
Motivated by the lack of direct evidence with inelastic neutron scattering of the well documented bound state of Heisenberg ferromagnets, we use the time-dependent thermal density matrix renormalization group algorithm to study the temperature dependence o ...
We use neutron scattering to show that ferromagnetism and antiferromagnetism coexist in the low T state of the pyrochlore quantum magnet Yb2Ti2O7. While magnetic Bragg peaks evidence long-range static ferromagnetic order, inelastic scattering shows that sh ...
Co-Zn-Mn chiral cubic magnets display versatile magnetic skyrmion phases, including equilibrium phases stable far above and far below room temperature, and the facile creation of robust far-from-equilibrium skyrmion states. In this system, compositional di ...
We study the statistical mechanics and the equilibrium dynamics of a system of classical Heisenberg spins with frustrated interactions on a d -dimensional simple hypercubic lattice, in the limit of infinite dimensionality d -> infinity . In the analysis we ...
Model materials are precious test cases for elementary theories and provide building blocks for the understanding of more complex cases. Here, we describe the lattice dynamics of the structural phase transition in francisite Cu3Bi(SeO3)(2)O2Cl at 115 K and ...
It is well established that in the low-temperature limit, the two-dimensional quantum Heisenberg antiferromagnet on a square lattice (2DQHAFSL) exhibits an anomaly in its spectrum at short-wavelengths on the zone-boundary. In the vicinity of the (pi, 0) po ...
Stacking of the floating structures, known as submodules or cells, provides the modular multilevel converter with theoretically unlimited voltage scalability. However, such a convenience comes at a price of increased control complexity, especially in the d ...
In this letter we present a finite temperature approach to a high-dimensional inference problem, the Wigner spiked model, with group-dependent signal-to-noise ratios. For two classes of convex and non-convex network architectures the error in the reconstru ...