Publication

Free standing and solidly mounted Lamb wave resonators based on Al0.85Sc0.15N thin film

Abstract

Lamb wave microresonators with wavelengths of 5-8m, vibrating in the S0 mode, and having 75 electrode pairs were fabricated and characterized. The results were compared to theoretical predictions obtained by finite element simulation. The active material was a 1m-thick Al0.85Sc0.15N thin film. Two types of acoustic isolation solutions were implemented: the first one with freestanding plates fixed by two bridges to a device frame [freestanding Lamb wave resonator (FS-LWR)] and the second one containing an acoustic W/SiO2 5-layer reflector [solidly mounted Lamb wave resonator (SM-LWR)]. All devices showed excellent agreement with FEM predictions, regarding resonance frequency and piezoelectric coupling. The quality factors of the SM-LWR devices were 5-6 times larger than the ones of the freestanding structures fabricated by the same Al0.85Sc0.15N deposition process: we achieved a figure of merit of 12-18 (Q(p) = 771, Q(s) = 507, k(2) = 2.29%) at an operation frequency of 1430MHz, which is so far the best performance realized with a MEMS Lamb wave resonator having a large number of electrode fingers. This performance opens up perspectives for filter applications.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.