Analytic function of a matrixIn mathematics, every analytic function can be used for defining a matrix function that maps square matrices with complex entries to square matrices of the same size. This is used for defining the exponential of a matrix, which is involved in the closed-form solution of systems of linear differential equations. There are several techniques for lifting a real function to a square matrix function such that interesting properties are maintained. All of the following techniques yield the same matrix function, but the domains on which the function is defined may differ.
Invertible matrixIn linear algebra, an n-by-n square matrix A is called invertible (also nonsingular, nondegenerate or (rarely used) regular), if there exists an n-by-n square matrix B such that where In denotes the n-by-n identity matrix and the multiplication used is ordinary matrix multiplication. If this is the case, then the matrix B is uniquely determined by A, and is called the (multiplicative) inverse of A, denoted by A−1. Matrix inversion is the process of finding the matrix B that satisfies the prior equation for a given invertible matrix A.
Option styleIn finance, the style or family of an option is the class into which the option falls, usually defined by the dates on which the option may be exercised. The vast majority of options are either European or American (style) options. These options—as well as others where the payoff is calculated similarly—are referred to as "vanilla options". Options where the payoff is calculated differently are categorized as "exotic options". Exotic options can pose challenging problems in valuation and hedging.
Diagonalizable matrixIn linear algebra, a square matrix is called diagonalizable or non-defective if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix and a diagonal matrix such that , or equivalently . (Such , are not unique.) For a finite-dimensional vector space , a linear map is called diagonalizable if there exists an ordered basis of consisting of eigenvectors of .
Matrix decompositionIn the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems. In numerical analysis, different decompositions are used to implement efficient matrix algorithms. For instance, when solving a system of linear equations , the matrix A can be decomposed via the LU decomposition.
Bond optionIn finance, a bond option is an option to buy or sell a bond at a certain price on or before the option expiry date. These instruments are typically traded OTC. A European bond option is an option to buy or sell a bond at a certain date in future for a predetermined price. An American bond option is an option to buy or sell a bond on or before a certain date in future for a predetermined price. Generally, one buys a call option on the bond if one believes that interest rates will fall, causing an increase in bond prices.
Asian optionAn Asian option (or average value option) is a special type of option contract. For Asian options, the payoff is determined by the average underlying price over some pre-set period of time. This is different from the case of the usual European option and American option, where the payoff of the option contract depends on the price of the underlying instrument at exercise; Asian options are thus one of the basic forms of exotic options.
Schur decompositionIn the mathematical discipline of linear algebra, the Schur decomposition or Schur triangulation, named after Issai Schur, is a matrix decomposition. It allows one to write an arbitrary complex square matrix as unitarily equivalent to an upper triangular matrix whose diagonal elements are the eigenvalues of the original matrix. The Schur decomposition reads as follows: if A is an n × n square matrix with complex entries, then A can be expressed as where Q is a unitary matrix (so that its inverse Q−1 is also the conjugate transpose Q* of Q), and U is an upper triangular matrix, which is called a Schur form of A.
DeterminantIn mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the linear map represented by the matrix is an isomorphism. The determinant of a product of matrices is the product of their determinants (the preceding property is a corollary of this one). The determinant of a matrix A is denoted det(A), det A, or .
Binomial options pricing modelIn finance, the binomial options pricing model (BOPM) provides a generalizable numerical method for the valuation of options. Essentially, the model uses a "discrete-time" (lattice based) model of the varying price over time of the underlying financial instrument, addressing cases where the closed-form Black–Scholes formula is wanting. The binomial model was first proposed by William Sharpe in the 1978 edition of Investments (), and formalized by Cox, Ross and Rubinstein in 1979 and by Rendleman and Bartter in that same year.