Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Currently, the most active electrocatalysts for the conversion of CO2 to CO are gold-based nanomaterials, whereas non-precious metal catalysts have shown low to modest activity. Here, we report a catalyst of dispersed single-atom iron sites that produces CO at an overpotential as low as 80 millivolts. Partial current density reaches 94 milliamperes per square centimeter at an overpotential of 340 millivolts. Operando x-ray absorption spectroscopy revealed the active sites to be discrete Fe3+ ions, coordinated to pyrrolic nitrogen (N) atoms of the N-doped carbon support, that maintain their +3 oxidation state during electrocatalysis, probably through electronic coupling to the conductive carbon support. Electrochemical data suggest that the Fe3+ sites derive their superior activity from faster CO2 adsorption and weaker CO absorption than that of conventional Fe2+ sites.
Davide Ferri, Oliver Kröcher, Teng Li, Olga Safonova