Publication

Distributed Transactional Systems Cannot Be Fast

Abstract

We prove that no fully transactional system can provide fast read transactions (including read-only ones that are considered the most frequent in practice). Specifically, to achieve fast read transactions, the system has to give up support of transactions that write more than one object. We prove this impossibility result for distributed storage systems that are causally consistent, i.e., they do not require to ensure any strong form of consistency. Therefore, our result holds also for any system that ensures a consistency level stronger than causal consistency, e.g., strict serializability. The impossibility result holds even for systems that store only two objects (and support at least two servers and at least four clients). It also holds for systems that are partially replicated. Our result justifies the design choices of state-of-the-art distributed transactional systems and insists that system designers should not put more effort to design fully-functional systems that support both fast read transactions and ensure causal or any stronger form of consistency.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.