Publication

Extrapolating Paths with Graph Neural Networks

Abstract

We consider the problem of path inference: given a path prefix, i.e., a partially observed sequence of nodes in a graph, we want to predict which nodes are in the missing suffix. In particular, we focus on natural paths occurring as a by-product of the interaction of an agent with a network—a driver on the transportation network, an information seeker in Wikipedia, or a client in an online shop. Our interest is sparked by the realization that, in contrast to shortest-path problems, natural paths are usually not optimal in any graph-theoretic sense, but might still follow predictable patterns. Our main contribution is a graph neural network called GRETEL. Conditioned on a path prefix, this network can efficiently extrapolate path suffixes, evaluate path likelihood, and sample from the future path distribution. Our experiments with GPS traces on a road network and user-navigation paths in Wikipedia confirm that GRETEL is able to adapt to graphs with very different properties, while also comparing favorably to previous solutions.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (36)
Graph theory
In mathematics, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or points) which are connected by edges (also called links or lines). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics.
Lattice graph
In graph theory, a lattice graph, mesh graph, or grid graph is a graph whose drawing, embedded in some Euclidean space \mathbb{R}^n, forms a regular tiling. This implies that the group of bijective transformations that send the graph to itself is a lattice in the group-theoretical sense. Typically, no clear distinction is made between such a graph in the more abstract sense of graph theory, and its drawing in space (often the plane or 3D space). This type of graph may more shortly be called just a lattice, mesh, or grid.
Network theory
In mathematics, computer science and network science, network theory is a part of graph theory. It defines networks as graphs where the nodes or edges possess attributes. Network theory analyses these networks over the symmetric relations or asymmetric relations between their (discrete) components. Network theory has applications in many disciplines, including statistical physics, particle physics, computer science, electrical engineering, biology, archaeology, linguistics, economics, finance, operations research, climatology, ecology, public health, sociology, psychology, and neuroscience.
Show more
Related publications (107)

The connection of the acyclic disconnection and feedback arc sets - On an open problem of Figueroa et al.

Lukas Fritz Felix Vogl

We examine the connection of two graph parameters, the size of a minimum feedback arcs set and the acyclic disconnection. A feedback arc set of a directed graph is a subset of arcs such that after deletion the graph becomes acyclic. The acyclic disconnecti ...
Elsevier2024

Equivariant Neural Architectures for Representing and Generating Graphs

Clément Arthur Yvon Vignac

Graph machine learning offers a powerful framework with natural applications in scientific fields such as chemistry, biology and material sciences. By representing data as a graph, we encode the prior knowledge that the data is composed of a set of entitie ...
EPFL2023

A full characterization of invariant embeddability of unimodular planar graphs

Laszlo Marton Toth

When can a unimodular random planar graph be drawn in the Euclidean or the hyperbolic plane in a way that the distribution of the random drawing is isometry-invariant? This question was answered for one-ended unimodular graphs in Benjamini and Timar, using ...
WILEY2023
Show more
Related MOOCs (17)
Analyse I
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
Analyse I (partie 1) : Prélude, notions de base, les nombres réels
Concepts de base de l'analyse réelle et introduction aux nombres réels.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.