Distributed Coloring of Graphs with an Optimal Number of Colors
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
An optimal linear-time algorithm for interprocedural register allocation in high level synthesis is presented. Historically, register allocation has been modeled as a graph coloring problem, which is nondeterministic polynomial time-complete in general; ho ...
Given a geometric hypergraph (or a range-space) H=(V,E), a coloring of its vertices is said to be conflict-free if for every hyperedge S∈E there is at least one vertex in S whose color is distinct from the colors of all other vertices i ...
Starting from the basic problem of reconstructing a 2-dimensional image given by its projections on two axes, one associates a model of edge coloring in a complete bipartite graph. The complexity of the case with k=3 colors is open. Variations and special ...
Graph theory is an important topic in discrete mathematics. It is particularly interesting because it has a wide range of applications. Among the main problems in graph theory, we shall mention the following ones: graph coloring and the Hamiltonian circuit ...
We extend the traditional spectral invariants (spectrum and angles) by a stronger polynomial time computable graph invariant based on the angles between projections of standard basis vectors into the eigenspaces (in addition to the usual angles between sta ...
A colouring of the vertices of a hypergraph H is called conflict-free if each hyperedge E of H contains a vertex of 'unique' colour that does not get repeated in E. The smallest number of colours required for such a colouring is called the conflict-free ch ...
For every k and r, we construct a finite family of axis-parallel rectangles in the plane such that no matter how we color them with k colors, there exists a point covered by precisely r members of the family, all of which have the same color. For r = 2, th ...
The interference graph for a procedure in Static Single Assignment (SSA) Form is chordal. Since the k-colorability problem can be solved in polynomial-time for chordal graphs, this result has generated interest in SSA-based heuristics for spilling and coal ...
Given integers j and k and a graph G, we consider partitions of the vertex set of G into j + k parts where j of these parts induce empty graphs and the remaining k induce cliques. If such a partition exists, we say G is a (j, k)-graph. For a fixed j and k ...
Extensions and variations of the basic problem of graph coloring are introduced. The problem consists essentially in finding in a graph G a k-coloring, i.e., a partition V-1,...,V-k of the vertex set of G such that, for some specified neighborhood (N) over ...