Spontaneous Formation of CdSe Photoluminescent Nanotubes with Visible-Light Photocatalytic Performance
Related publications (40)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Understanding the ripening of two-dimensional (2D) colloidal nanocrystals (NCs) is important for the controllable synthesis of NCs with desired morphology and properties. In this study, we systematically investigate the ripening behavior of the 2D CdSe NCs ...
A comprehensive picture explaining the effect of the crystal size in metal halide perovskite films on their opto-electronic characteristics is currently lacking. We report that perovskite nanocrystallites exhibit a wider band gap due to concurrent quantum ...
Hexagonal boron nitride () is the isoelectronic but insulating counterpart of graphene. Like graphene it can easily be grown as high-quality nanotubes or as single layers on metal surfaces. Both materials can be exfoliated or transferred after single-layer ...
III-nitride waveguides featuring AlInN claddings and GaN/AlGaN quantum wells (QWs) offer promising perspectives for applications in many fields of short-wavelength photonics. Thanks to their nearly lattice-matched nature, these structures exhibit an excell ...
Cyanine dyes are organic semiconductor compounds with light absorption and emission properties useful for emerging technologies such as solar cells and light-emitting devices. The characteristics of these materials in the solid state depend on their organi ...
Two-dimensional (2D) crystals such as graphene or transition metal dichalcogenides (TMDCs) are a fascinating class of quantum materials. These compounds are obtained isolating the single atomic sheets that normally form bulk layered crystals, and the reduc ...
The growing research on two-dimensional materials reveals their exceptional physical properties and enormous potential for future applications and investigation of advanced physics phenomena. They represent the ultimate limit in terms of active channel thi ...
Two-dimensional (2D) materials have attracted increasing attention over the last decade owing to their remarkable mechanical, electrical and optical properties. Following the groundbreaking discovery of graphene, a plethora of other atomically-thin materia ...
Two-dimensional (2D) materials, in particular graphene and transition metal dichalcogenides (TMDC), have attracted great scientific interest over the last decade, revealing exceptional mechanical, electrical and optical properties. Owing to their layered n ...
Recent technical progress demonstrates the possibility of stacking together virtually any combination of atomically thin crystals of van der Waals bonded compounds to form new types of heterostructures and interfaces. As a result, there is the need to unde ...