**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Classification with Fairness Constraints: A Meta-Algorithm with Provable Guarantees

Abstract

Developing classification algorithms that are fair with respect to sensitive attributes of the data is an important problem due to the increased deployment of classification algorithms in societal contexts. Several recent works have focused on studying classification with respect to specific fairness metrics, modeled the corresponding fair classification problem as constrained optimization problems, and developed tailored algorithms to solve them. Despite this, there still remain important metrics for which there are no fair classifiers with theoretical guarantees; primarily because the resulting optimization problem is non-convex. The main contribution of this paper is a meta-algorithm for classification that can take as input a general class of fairness constraints with respect to multiple non disjoint and multi-valued sensitive attributes, and which comes with provable guarantees. In particular, our algorithm can handle non-convex "linear fractional" constraints (which includes fairness constraints such as predictive parity) for which no prior algorithm was known. Key to our results is an algorithm for a family of classification problems with convex constraints along with a reduction from classification problems with linear fractional constraints to this family. Empirically, we observe that our algorithm is fast, can achieve near-perfect fairness with respect to various fairness metrics, and the loss in accuracy due to the imposed fairness constraints is often small.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (22)

Related concepts (32)

Related publications (66)

Introduction to optimization on smooth manifolds: first order methods

Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

Optimization: principles and algorithms - Linear optimization

Introduction to linear optimization, duality and the simplex algorithm.

Optimization: principles and algorithms - Linear optimization

Introduction to linear optimization, duality and the simplex algorithm.

Convex optimization is a subfield of mathematical optimization that studies the problem of minimizing convex functions over convex sets (or, equivalently, maximizing concave functions over convex sets). Many classes of convex optimization problems admit polynomial-time algorithms, whereas mathematical optimization is in general NP-hard.

In mathematical optimization, constrained optimization (in some contexts called constraint optimization) is the process of optimizing an objective function with respect to some variables in the presence of constraints on those variables. The objective function is either a cost function or energy function, which is to be minimized, or a reward function or utility function, which is to be maximized.

In machine learning and statistical classification, multiclass classification or multinomial classification is the problem of classifying instances into one of three or more classes (classifying instances into one of two classes is called binary classification). While many classification algorithms (notably multinomial logistic regression) naturally permit the use of more than two classes, some are by nature binary algorithms; these can, however, be turned into multinomial classifiers by a variety of strategies.

Ontological neighbourhood

:

Non-convex constrained optimization problems have become a powerful framework for modeling a wide range of machine learning problems, with applications in k-means clustering, large- scale semidefinite programs (SDPs), and various other tasks. As the perfor ...

Ivan Dokmanic, Dalia Salem Hassan Fahmy El Badawy

We propose a method for sensor array self-localization using a set of sources at unknown locations. The sources produce signals whose times of arrival are registered at the sensors. We look at the general case where neither the emission times of the source ...

In this paper, we present a spatial branch and bound algorithm to tackle the continuous pricing problem, where demand is captured by an advanced discrete choice model (DCM). Advanced DCMs, like mixed logit or latent class models, are capable of modeling de ...

2023