Publication

Differential steric effects in the inelastic scattering of NO(X) plus Ar: spin-orbit changing transitions

Sean Dennis Steven Gordon
2019
Journal paper
Abstract

Spin-orbit changing transitions for bond-axis oriented collisions of NO(X) with Ar have been investigated with full quantum state selection via a crossed molecular beam experiment at collision energies of 532 cm(-1) and 651 cm(-1). NO(X) molecules were selected in their ground rotational state (omega = 0.5, j = 0.5, f) before being adiabatically oriented using a static electric field, such that either the N- or O-end of the molecule was directed towards the incoming Ar atom. After collision, NO(X, omega ' = 1.5, j ', e) molecules were probed quantum state specifically using velocity-map ion imaging, coupled with resonantly enhanced multi-photon ionization. Differences were observed between the experimental ion images and differential cross sections for collisions occurring at the two ends of the molecule, with results that could largely be accounted for by quantum mechanical scattering calculations. The bond-axis oriented data for the spin-orbit changing collisions are compared with similar results obtained previously for spin-orbit conserving transitions, and for field free scattering of NO(X) with Ar.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Spin–orbit interaction
In quantum physics, the spin–orbit interaction (also called spin–orbit effect or spin–orbit coupling) is a relativistic interaction of a particle's spin with its motion inside a potential. A key example of this phenomenon is the spin–orbit interaction leading to shifts in an electron's atomic energy levels, due to electromagnetic interaction between the electron's magnetic dipole, its orbital motion, and the electrostatic field of the positively charged nucleus.
Atomic orbital
In atomic theory and quantum mechanics, an atomic orbital (ˈɔːrbɪtəl) is a function describing the location and wave-like behavior of an electron in an atom. This function can be used to calculate the probability of finding any electron of an atom in any specific region around the atom's nucleus. The term atomic orbital may also refer to the physical region or space where the electron can be calculated to be present, as predicted by the particular mathematical form of the orbital.
Spin (physics)
Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. Spin should not be understood as in the "rotating internal mass" sense: spin is a quantized wave property. The existence of electron spin angular momentum is inferred from experiments, such as the Stern–Gerlach experiment, in which silver atoms were observed to possess two possible discrete angular momenta despite having no orbital angular momentum.
Show more
Related publications (49)

State-to-state surface scattering of methane studied by bolometric infrared laser tagging detection

Bo-Jung Chen

State-to-state molecule/surface scattering experiments prepare the incident molecules in a specific quantum state and measure the quantum state distribution of the scattered molecules. The comparison of state resolved experiments with theory can serve as s ...
EPFL2022

Charge ordering in Ir dimers in the ground state of Ba5AlIr2O11

Oleg Yazyev, Thorsten Schmitt, Vladimir N. Strocov, Vamshi Mohan Katukuri, Xingye Lu

It has been well established experimentally that the interplay of electronic correlations and spin-orbit interactions in Ir4+ and Ir5+ oxides results in insulating J(eff) = 1/2 and J(eff) = 0 ground states, respectively. However, in compounds where the str ...
AMER PHYSICAL SOC2022

Vibrationally inelastic scattering of HCl from Ag(111)

Using molecular beam cooled samples and quantum state-selective detection, we observe v = 0 -> 1 vibrational transitions when HCl (v = 0) collides with an Ag(111) surface and derive both the incidence energy and surface temperature dependence of the transi ...
AMER INST PHYSICS2020
Show more
Related MOOCs (8)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.