Publication

Broadbeam microstrip patch antenna using higher order modes

Abstract

The aim of this contribution is to assess the potential of using various microstrip radiating elements excited with different modes to achieve wide pattern beamwidths. The proposed antenna is made in classic microstrip technology and consists of a circular disk and a ring. The two radiating elements are excited for the TM10 and TM31 modes, respectively. Only the disk is fed, and the ring is connected to the disk through a microstrip line. The proposed antenna is matched at the 2.4GHz industrial, scientific and medical band (ISM) and exhibits a bandwidth of 120MHz. The combination of the two radiating elements achieves a 3dB beamwidth of 160 degrees. The maximum gain is 5.7dBi.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (29)
Driven and parasitic elements
In an antenna array made of multiple conductive elements (typically metal rods), a driven element or active element is electrically connected to the receiver or transmitter while a parasitic element or passive radiator is not. In a multielement antenna array (such as a Yagi–Uda antenna), the driven element or active element is the element in the antenna (typically a metal rod) which is electrically connected to the receiver or transmitter.
Metamaterial antenna
Metamaterial antennas are a class of antennas which use metamaterials to increase performance of miniaturized (electrically small) antenna systems. Their purpose, as with any electromagnetic antenna, is to launch energy into free space. However, this class of antenna incorporates metamaterials, which are materials engineered with novel, often microscopic, structures to produce unusual physical properties. Antenna designs incorporating metamaterials can step-up the antenna's radiated power.
Microstrip antenna
In telecommunication, a microstrip antenna (also known as a printed antenna) usually means an antenna fabricated using photolithographic techniques on a printed circuit board (PCB). It is a kind of internal antenna. They are mostly used at microwave frequencies. An individual microstrip antenna consists of a patch of metal foil of various shapes (a patch antenna) on the surface of a PCB, with a metal foil ground plane on the other side of the board. Most microstrip antennas consist of multiple patches in a two-dimensional array.
Show more
Related publications (37)

Enabling Wide Bandwidth in Substrate-Integrated Waveguide Slot Antennas by Using Low-Index Metamaterials

Romain Christophe Rémy Fleury, Amir Jafargholi, Jalaledin Tayebpour

This paper presents a solution to overcome the inherently limited bandwidth of substrate-integrated waveguide (SIW) slot antennas. It is analytically shown that by decreasing the permittivity of a dielectric loaded slot antenna, the resulting bandwidth inc ...
2024

Microstrip patch antennas with broad beamwidth

Ismael Vico Triviño

Microstrip antennas offer a broad set of advantages such as low profile, light weight, easy fabrication and low cost. As these are desirable or even critical for a broad range of applications, there has been a large interest for these antennas in the anten ...
EPFL2023

Q-Factor Bounds for Microstrip Patch Antennas

Anja Skrivervik

Antenna bounds are a useful tool in assessing the feasibility or performance of an antenna design. Microstrip patch antennas are often limited by their relatively narrow bandwidth, and therefore Q-factor is an important design parameter, as it is related t ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2023
Show more
Related MOOCs (1)
The Radio Sky II: Observational Radio Astronomy
This course covers the principles and practices of radio astronomical observations, in particular with modern interferometers. Topics range from radio telescope technology to the measurement equation

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.