**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Contributions to Likelihood-Based Modelling of Extreme Values

Abstract

xtreme value analysis is concerned with the modelling of extreme events such as floods and heatwaves, which can have large impacts. Statistical modelling can be useful to better assess risks even if, due to scarcity of measurements, there is inherently very large residual uncertainty in any analysis. Driven by the increase in environmental databases, spatial modelling of extremes has expanded rapidly in the last decade. This thesis presents contributions to such analysis.

The first chapter is about likelihood-based inference in the univariate setting and investigates the use of bias-correction and higher-order asymptotic methods for extremes, highlighting through examples and illustrations the unique challenge posed by data scarcity. We focus on parametric modelling of extreme values, which relies on limiting distributional results and for which, as a result, uncertainty quantification is complicated. We find that, in certain cases, small-sample asymptotic methods can give improved inference by reducing the error rate of confidence intervals. Two data illustrations, linked to assessment of the frequency of extreme rainfall episodes in Venezuela and the analysis of survival of supercentenarians, illustrate the methods developed.

In the second chapter, we review the major methods for the analysis of spatial extremes models. We highlight the similarities and provide a thorough literature review along with novel simulation algorithms. The methods described therein are made available through a statistical software package.

The last chapter focuses on estimation for a Bayesian hierarchical model derived from a multivariate generalized Pareto process. We review approaches for the estimation of censored components in models derived from (log)-elliptical distributions, paying particular attention to the estimation of a high-dimensional Gaussian distribution function via Monte Carlo methods. The impacts of model misspecification and of censoring are explored through extensive simulations and we conclude with a case study of rainfall extremes in Eastern Switzerland.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (33)

Related publications (36)

Related MOOCs (38)

Statistical model

A statistical model is a mathematical model that embodies a set of statistical assumptions concerning the generation of sample data (and similar data from a larger population). A statistical model represents, often in considerably idealized form, the data-generating process. When referring specifically to probabilities, the corresponding term is probabilistic model. A statistical model is usually specified as a mathematical relationship between one or more random variables and other non-random variables.

Confidence interval

In frequentist statistics, a confidence interval (CI) is a range of estimates for an unknown parameter. A confidence interval is computed at a designated confidence level; the 95% confidence level is most common, but other levels, such as 90% or 99%, are sometimes used. The confidence level, degree of confidence or confidence coefficient represents the long-run proportion of CIs (at the given confidence level) that theoretically contain the true value of the parameter; this is tantamount to the nominal coverage probability.

Monte Carlo method

Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be deterministic in principle. They are often used in physical and mathematical problems and are most useful when it is difficult or impossible to use other approaches. Monte Carlo methods are mainly used in three problem classes: optimization, numerical integration, and generating draws from a probability distribution.

Selected Topics on Discrete Choice

Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t

Selected Topics on Discrete Choice

Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t

Optimization: principles and algorithms - Linear optimization

Introduction to linear optimization, duality and the simplex algorithm.

This thesis focuses on two kinds of statistical inference problems in signal processing and data science. The first problem is the estimation of a structured informative tensor from the observation of

Spatial count data models are used to explain and predict the frequency of phenomena such as traffic accidents in geographically distinct entities such as census tracts or road segments. These models

2021Damien Bouffard, Camille Roland Marie Minaudo, Cintia Luz Ramon Casanas, Firat Ozdemir

We present a Bayesian inference for a three-dimensional hydrodynamic model of Lake Geneva with stochastic weather forcing and high-frequency observational datasets. This is achieved by coupling a Baye