Text-to-image modelA text-to-image model is a machine learning model which takes an input natural language description and produces an image matching that description. Such models began to be developed in the mid-2010s, as a result of advances in deep neural networks. In 2022, the output of state of the art text-to-image models, such as OpenAI's DALL-E 2, Google Brain's , StabilityAI's Stable Diffusion, and Midjourney began to approach the quality of real photographs and human-drawn art.
Image scannerAn image scanner—often abbreviated to just scanner—is a device that optically scans images, printed text, handwriting or an object and converts it to a . Commonly used in offices are variations of the desktop flatbed scanner where the document is placed on a glass window for scanning. Hand-held scanners, where the device is moved by hand, have evolved from text scanning "wands" to 3D scanners used for industrial design, reverse engineering, test and measurement, orthotics, gaming and other applications.
SuperlensA superlens, or super lens, is a lens which uses metamaterials to go beyond the diffraction limit. The diffraction limit is a feature of conventional lenses and microscopes that limits the fineness of their resolution depending on the illumination wavelength and the numerical aperture NA of the objective lens. Many lens designs have been proposed that go beyond the diffraction limit in some way, but constraints and obstacles face each of them. In 1873 Ernst Abbe reported that conventional lenses are incapable of capturing some fine details of any given image.
Data and information visualizationData and information visualization (data viz or info viz) is the practice of designing and creating easy-to-communicate and easy-to-understand graphic or visual representations of a large amount of complex quantitative and qualitative data and information with the help of static, dynamic or interactive visual items.
Semantic networkA semantic network, or frame network is a knowledge base that represents semantic relations between concepts in a network. This is often used as a form of knowledge representation. It is a directed or undirected graph consisting of vertices, which represent concepts, and edges, which represent semantic relations between concepts, mapping or connecting semantic fields. A semantic network may be instantiated as, for example, a graph database or a concept map. Typical standardized semantic networks are expressed as semantic triples.
Image scalingIn computer graphics and digital imaging, image scaling refers to the resizing of a digital image. In video technology, the magnification of digital material is known as upscaling or resolution enhancement. When scaling a vector graphic image, the graphic primitives that make up the image can be scaled using geometric transformations, with no loss of . When scaling a raster graphics image, a new image with a higher or lower number of pixels must be generated.
Otsu's methodIn computer vision and , Otsu's method, named after Nobuyuki Otsu, is used to perform automatic image . In the simplest form, the algorithm returns a single intensity threshold that separate pixels into two classes, foreground and background. This threshold is determined by minimizing intra-class intensity variance, or equivalently, by maximizing inter-class variance. Otsu's method is a one-dimensional discrete analogue of Fisher's Discriminant Analysis, is related to Jenks optimization method, and is equivalent to a globally optimal k-means performed on the intensity histogram.
Semantic integrationSemantic integration is the process of interrelating information from diverse sources, for example calendars and to do lists, email archives, presence information (physical, psychological, and social), documents of all sorts, contacts (including social graphs), search results, and advertising and marketing relevance derived from them. In this regard, semantics focuses on the organization of and action upon information by acting as an intermediary between heterogeneous data sources, which may conflict not only by structure but also context or value.
Google DeepMindDeepMind Technologies Limited, doing business as Google DeepMind, is a British-American artificial intelligence research laboratory which serves as a subsidiary of Google. Founded in the UK in 2010, it was acquired by Google in 2014, becoming a wholly owned subsidiary of Google parent company Alphabet Inc. after Google's corporate restructuring in 2015. The company is based in London, with research centres in Canada, France, and the United States.
Graph cuts in computer visionAs applied in the field of computer vision, graph cut optimization can be employed to efficiently solve a wide variety of low-level computer vision problems (early vision), such as , the stereo correspondence problem, , object co-segmentation, and many other computer vision problems that can be formulated in terms of energy minimization. Many of these energy minimization problems can be approximated by solving a maximum flow problem in a graph (and thus, by the max-flow min-cut theorem, define a minimal cut of the graph).