Publication

Spin-Split Band Hybridization in Graphene Proximitized with alpha-RuCl3 Nanosheets

Klaus Kern, Marko Burghard
2019
Journal paper
Abstract

Proximity effects induced in the two-dimensional Dirac material graphene potentially open access to novel and intriguing physical phenomena. Thus far, the coupling between graphene and ferromagnetic insulators has been experimentally established. However, only very little is known about graphene's interaction with antiferromagnetic insulators. Here, we report a low-temperature study of the electronic properties of high quality van der Waals heterostructures composed of a single graphene layer proximitized with alpha-RuCl3. The latter is known to become antiferromagnetically ordered below 10 K. Shubnikov-de Haas oscillations in the longitudinal resistance together with Hall resistance measurements provide clear evidence for a band realignment that is accompanied by a transfer of electrons originally occupying the graphene's spin degenerate Dirac cones into alpha-RuCl3 band states with in-plane spin polarization. Left behind are holes in two separate Fermi pockets, only the dispersion of one of which is distorted near the Fermi energy due to spin selective hybridization with these spin polarized alpha-RuCl3 band states. This interpretation is supported by our density functional theory calculations. An unexpected damping of the quantum oscillations as well as a zero-field resistance upturn close to the Neel temperature of alpha-RuCl3 suggest the onset of additional spin scattering due to spin fluctuations in the alpha-RuCl3.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Giant magnetoresistance
Giant magnetoresistance (GMR) is a quantum mechanical magnetoresistance effect observed in multilayers composed of alternating ferromagnetic and non-magnetic conductive layers. The 2007 Nobel Prize in Physics was awarded to Albert Fert and Peter Grünberg for the discovery of GMR. The effect is observed as a significant change in the electrical resistance depending on whether the magnetization of adjacent ferromagnetic layers are in a parallel or an antiparallel alignment.
Curie temperature
In physics and materials science, the Curie temperature (TC), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism. The Curie temperature is named after Pierre Curie, who showed that magnetism was lost at a critical temperature. The force of magnetism is determined by the magnetic moment, a dipole moment within an atom which originates from the angular momentum and spin of electrons.
Antiferromagnetism
In materials that exhibit antiferromagnetism, the magnetic moments of atoms or molecules, usually related to the spins of electrons, align in a regular pattern with neighboring spins (on different sublattices) pointing in opposite directions. This is, like ferromagnetism and ferrimagnetism, a manifestation of ordered magnetism. The phenomenon of antiferromagnetism was first introduced by Lev Landau in 1933.
Show more
Related publications (37)

Spin Textures in 2D Magnets

Lukas Powalla

The continuous reduction of the structural size in nanotechnology slowed down over the last decade, approaching the natural limit of single atoms as building blocks of matter. Therefore, intensive research is directed toward exploring new frontiers, in par ...
EPFL2023

Canted antiferromagnetic phases in the candidate layered Weyl material EuMnSb2

Xiao Wang

EuMnSb2 is a candidate topological material which can be tuned towards a Weyl semimetal, but there are differing reports for its antiferromagnetic (AFM) phases. The coupling of bands dominated by pure Sb layers hosting topological fermions to Mn and Eu mag ...
AMER PHYSICAL SOC2022

Antiferromagnetic resonance in a-Fe2O3 up to its Neel temperature

Jean-Philippe Ansermet, Haiming Yu, Marcin Bialek

Hematite (alpha-Fe2O3) is an antiferromagnetic material with a very low spin damping and high Neel temperature. The temperature dependence of the antiferromagnetic resonance in a bulk single crystal of hematite was characterized from room temperature up to ...
AIP Publishing2022
Show more
Related MOOCs (20)
Thermodynamics
Ce cours complète le MOOC « Thermodynamique : fondements » qui vous permettra de mettre en application les concepts fondamentaux de la thermodynamique. Pour atteindre cet objectif, le Professeur J.-P
Thermodynamics
Ce cours complète le MOOC « Thermodynamique : fondements » qui vous permettra de mettre en application les concepts fondamentaux de la thermodynamique. Pour atteindre cet objectif, le Professeur J.-P
Newton's Mechanics
Ce cours de Physique générale – mécanique fourni les outils permettant de maîtriser la mécanique newtonienne du point matériel.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.