Stochastic Gradient Descent for Spectral Embedding with Implicit Orthogonality Constraint
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Inverse reconstruction from images is a central problem in many scientific and engineering disciplines. Recent progress on differentiable rendering has led to methods that can efficiently differentiate the full process of image formation with respect to mi ...
Rapid advances in data collection and processing capabilities have allowed for the use of increasingly complex models that give rise to nonconvex optimization problems. These formulations, however, can be arbitrarily difficult to solve in general, in the s ...
Deep learning networks are typically trained by Stochastic Gradient Descent (SGD) methods that iteratively improve the model parameters by estimating a gradient on a very small fraction of the training data. A major roadblock faced when increasing the batc ...
Making decisions is part and parcel of being human. Among a set of actions, we want to choose the one that has the highest reward. But the uncertainty of the outcome prevents us from always making the right decision. Making decisions under uncertainty can ...
We present a strikingly simple proof that two rules are sufficient to automate gradient descent: 1) don’t increase the stepsize too fast and 2) don’t overstep the local curvature. No need for functional values, no line search, no information about the func ...
This paper considers the Byzantine fault-tolerance problem in distributed stochastic gradient descent (D-SGD) method - a popular algorithm for distributed multi-agent machine learning. In this problem, each agent samples data points independently from a ce ...
Driven by the need to solve increasingly complex optimization problems in signal processing and machine learning, there has been increasing interest in understanding the behavior of gradient-descent algorithms in non-convex environments. Most available wor ...
In this paper we investigate how gradient-based algorithms such as gradient descent (GD), (multi-pass) stochastic GD, its persistent variant, and the Langevin algorithm navigate non-convex loss-landscapes and which of them is able to reach the best general ...
Byzantine-resilient Stochastic Gradient Descent (SGD) aims at shielding model training from Byzantine faults, be they ill-labeled training datapoints, exploited software/hardware vulnerabilities, or malicious worker nodes in a distributed setting. Two rece ...
We study generalization properties of distributed algorithms in the setting of nonparametric regression over a reproducing kernel Hilbert space (RKHS). We first investigate distributed stochastic gradient methods (SGM), with mini-batches and multi-passes o ...