Publication

Scaling Limits of Solutions of Linear Stochastic Differential Equations Driven by Levy White Noises

Abstract

Consider a random process s that is a solution of the stochastic differential equation Ls = w with L a homogeneous operator and w a multidimensional Levy white noise. In this paper, we study the asymptotic effect of zooming in or zooming out of the process s. More precisely, we give sufficient conditions on L and w such that a(H)s(/a) converges in law to a non-trivial self-similar process for some H, when a -> 0 (coarse-scale behavior) or a -> infinity (fine-scale behavior). The parameter H depends on the homogeneity order of the operator L and the Blumenthal-Getoor and Pruitt indices associated with the Levy white noise w. Finally, we apply our general results to several famous classes of random processes and random fields and illustrate our results on simulations of Levy processes.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.