High-throughput stem cell-based phenotypic screening through microniches
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Stem cells play a key role in a wide range of biological processes, in large part due to their ability to self-renew or differentiate into specialized cell types in response to various biological cues. In vivo, stem cells reside in a complex microenvironme ...
Stem cell therapies hold tremendous potential for tissue and organ regeneration. Yet, there remains significant need for better ex vivo culture and manipulation methods. On the one hand, many tissue-specific stem cells cannot be propagated without causing ...
Fate choices of stem cells are regulated in response to a complex array of biochemical and physical signals from their microenvironmental niche. Whereas the molecular composition and the role of mechanical niche cues have been extensively studied, relative ...
Multiple molecular and physical cues engage in complex interplay to afford the fine control over stem cell behavior that is required during tissue development, homeostasis, and repair. As a result of a close collaboration between biologists, engineers, and ...
Hematopoietic stem cells (HSCs) are responsible for life-long production of all mature blood cells. This unique characteristic makes them an ideal candidate for cell-based therapies to treat various hematological malignancies. Their extensive use in the cl ...
The in vitro expansion of hematopoietic stem cells (HSC) for clinical applications is hampered by a rapid loss of HSC blood reconstitution capability in culture. While these rare cells can be stimulated to massively proliferate, cell divisions mostly resul ...
Activation of endogenous cardiac stem/progenitor cells (eCSCs) can improve cardiac repair after acute myocardial infarction. We studied whether the in situ activation of eCSCs by insulin-like growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) could ...
Biomolecular signaling is of utmost importance in governing many biological processes such as morphogenesis during tissue development where biomolecules regulate key cell-fate decisions. In vivo, these factors are presented in a spatiotemporally tightly co ...
Mesenchymal Stem Cells (MSC) are multipotent adult stem cells that are predominantly obtained from the bone marrow. MSC have a high ability to differentiate into a multitude of cell types that are very attractive for tissue engineering. To study the effect ...
Most hematopoietic stem cells (HSC) in the bone marrow reside in a quiescent state and occasionally enter the cell cycle upon cytokine-induced activation. Although the mechanisms regulating HSC quiescence and activation remain poorly defined, recent studie ...