Recurrent U-Net for Resource-Constrained Segmentation
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Detection of curvilinear structures has long been of interest due to its wide range of applications. Large amounts of imaging data could be readily used in many fields, but it is practically not possible to analyze them manually. Hence, the need for automa ...
Two distinct limits for deep learning have been derived as the network width h -> infinity, depending on how the weights of the last layer scale with h. In the neural tangent Kernel (NTK) limit, the dynamics becomes linear in the weights and is described b ...
Structural Health Monitoring (SHM) has greatly benefited from computer vision. Recently, deep learning approaches are widely used to accurately estimate the state of deterioration of infrastructure. In this work, we focus on the problem of bridge surface s ...
Stereo reconstruction is a problem of recovering a 3d structure of a scene from a pair of images of the scene, acquired from different viewpoints. It has been investigated for decades and many successful methods were developed.The main drawback of these ...
inspectors that walk over the track and check the defects on the rail surface, fasteners and sleepers. In the case of concrete sleepers, rail inspectors classify defects according to their size and occurrence over 20 sleepers. The manual inspection is erro ...
Thanks to recent advancements in image processing and deep learning techniques, visual surface inspection in production lines has become an automated process as long as all the defects are visible in a single or a few images. However, it is often necessary ...
Artificial intelligence has been an ultimate design goal since the inception of computers decades ago. Among the many attempts towards general artificial intelligence, modern machine learning successfully tackles many complex problems thanks to the progres ...
Modern methods for counting people in crowded scenes rely on deep networks to estimate people densities in individual images. As such, only very few take advantage of temporal consistency in video sequences, and those that do only impose weak smoothness co ...
Optical diffraction tomography (ODT) provides us 3D refractive index (RI) distributions of transparent samples. Since RI values differ across different materials, they serve as endogenous contrasts. It, therefore, enables us to image without pre-processing ...
Deep Neural Networks have achieved extraordinary results on image classification tasks, but have been shown to be vulnerable to attacks with carefully crafted perturbations of the input data. Although most attacks usually change values of many image's pixe ...