Publication

On the Computational Complexity of Blind Detection of Binary Linear Codes

Abstract

In this work, we study the computational complexity of the Minimum Distance Code Detection problem. In this problem, we are given a set of noisy codeword observations and we wish to find a code in a set of linear codes C of a given dimension k, for which the sum of distances between the observations and the code is minimized. We prove that, for the practically relevant case when the set C only contains a fixed number of candidate linear codes, the detection problem is NP-hard and we identify a number of interesting open questions related to the code detection problem.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Linear code
In coding theory, a linear code is an error-correcting code for which any linear combination of codewords is also a codeword. Linear codes are traditionally partitioned into block codes and convolutional codes, although turbo codes can be seen as a hybrid of these two types. Linear codes allow for more efficient encoding and decoding algorithms than other codes (cf. syndrome decoding). Linear codes are used in forward error correction and are applied in methods for transmitting symbols (e.g.
Block code
In coding theory, block codes are a large and important family of error-correcting codes that encode data in blocks. There is a vast number of examples for block codes, many of which have a wide range of practical applications. The abstract definition of block codes is conceptually useful because it allows coding theorists, mathematicians, and computer scientists to study the limitations of all block codes in a unified way.
Error detection and correction
In information theory and coding theory with applications in computer science and telecommunication, error detection and correction (EDAC) or error control are techniques that enable reliable delivery of digital data over unreliable communication channels. Many communication channels are subject to channel noise, and thus errors may be introduced during transmission from the source to a receiver. Error detection techniques allow detecting such errors, while error correction enables reconstruction of the original data in many cases.
Show more
Related publications (54)

Symmetry in design and decoding of polar-like codes

Kirill Ivanov

The beginning of 21st century provided us with many answers about how to reach the channel capacity. Polarization and spatial coupling are two techniques for achieving the capacity of binary memoryless symmetric channels under low-complexity decoding algor ...
EPFL2022

Minimum Cost Intervention Design for Causal Effect Identification

Negar Kiyavash, Sina Akbari, Seyed Jalal Etesami

Pearl's do calculus is a complete axiomatic approach to learn the identifiable causal effects from observational data. When such an effect is not identifiable, it is necessary to perform a collection of often costly interventions in the system to learn the ...
PMLR2022

Relaxed Locally Correctable Codes With Nearly-Linear Block Length And Constant Query Complexity

Alessandro Chiesa

Locally correctable codes (LCCs) are error correcting codes C : \Sigmak \rightarrow \Sigman which admit local algorithms that correct any individual symbol of a corrupted codeword via a minuscule number of queries. For systematic codes, this notion is stro ...
SIAM PUBLICATIONS2022
Show more
Related MOOCs (11)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Show more