Non-reciprocal manipulation of subwavelength fields in locally-resonant metamaterial crystals
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We prove that balanced loss-gain distributions provide an elegant path towards realizing loss-free unidirectional cloaks for objects much larger than the wavelength. By coating a scatterer with an ultrathin metasurface with balanced loss and gain, such as ...
We explore the largely uncharted scattering properties of acoustic systems that are engineered to be invariant under a special kind of space-time symmetry, consisting in taking their mirror image and running time backwards. Known as Parity-Time symmetry, t ...
This paper is devoted to the study of cloaking via anomalous localized resonance (CALR) in the two- and three-dimensional quasistatic regimes. CALR associated with negative index materials was discovered by Milton and Nicorovici [21] for constant plasmonic ...
We show that PT-symmetry concepts, combined with an effective nonlocal response, allow realizing all-angle negative refraction and aberration-free optical imaging. The designed PT-symmetric lens is an example of “absolute optical instrument”, with similar ...
This paper is devoted to the study of cloaking via anomalous localized resonance (CALR) in two and three dimensions in the quasistatic regime. Two key figures of CALR are (i) the localized resonance and (ii) the connection between the localized resonance a ...
All methods presented to date to map both conductivity and permittivity rely on multiple acquisitions to compute quantitatively the magnitude of radiofrequency transmit fields, B1+. In this work, we propose a method to compute both conductivity and permitt ...
Nanomechanical resonators are highly suitable as sensors of minute forces, displacements, or masses. We realize a single plasmonic dither antenna of subwavelength size, integrated with silicon nitride nanobeams. The sensitive dependence of the antenna resp ...
We introduce a new mechanism to realize negative refraction and planar focusing using a pair of parity-time symmetric metasurfaces. In contrast to existing solutions that achieve these effects with negative-index metamaterials or phase conjugating surfaces ...
The surge of modern techniques to fabricate structured materials paired with our ever deeper understanding of complex forms of matter present us with the opportunity to make and study dramatically new forms of designed materials and structures.This movemen ...
Plasmonic nanohole arrays have received significant attention, as they have highly advantageous optical properties for ultrasensitive and label-free biosensing applications. Currently, most of these subwavelength periodic apertures are mainly implemented o ...