Processing Megapixel Images with Deep Attention-Sampling Models
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The recent developments of deep learning cover a wide variety of tasks such as image classification, text translation, playing go, and folding proteins.All these successful methods depend on a gradient-based learning algorithm to train a model on massive a ...
Deep neural networks have become ubiquitous in today's technological landscape, finding their way in a vast array of applications. Deep supervised learning, which relies on large labeled datasets, has been particularly successful in areas such as image cla ...
Training deep neural network based Automatic Speech Recognition (ASR) models often requires thousands of hours of transcribed data, limiting their use to only a few languages. Moreover, current state-of-the-art acoustic models are based on the Transformer ...
Deep neural networks have completely revolutionized the field of machinelearning by achieving state-of-the-art results on various tasks ranging fromcomputer vision to protein folding. However, their application is hindered bytheir large computational and m ...
Photometric stereo, a computer vision technique for estimating the 3D shape of objects through images captured under varying illumination conditions, has been a topic of research for nearly four decades. In its general formulation, photometric stereo is an ...
In recent years, there has been a significant revolution in the field of deep learning, which has demonstrated its effectiveness in automatically capturing intricate patterns from large datasets. However, the majority of these successes in Computer Vision ...
While deep neural networks are state-of-the-art models of many parts of the human visual system, here we show that they fail to process global information in a humanlike manner. First, using visual crowding as a probe into global visual information process ...
In this work, we propose an approach to aid in mapping small settlements, which are often misclassified by models trained on a large-scale context (global or regional). We leverage pre-trained land cover models and few-shot learning to enhance the detectio ...
Image super-resolution is a classic ill-posed computer vision and image processing problem, addressing the question of how to reconstruct a high-resolution image from its low-resolution counterpart. Current state-of-the-art methods have improved the perfor ...
Image restoration reconstructs, as faithfully as possible, an original image from a potentially degraded version of it. Image degradations can be of various types, for instance haze, unwanted reflections, optical or spectral aberrations, or other physicall ...