Solid electrochemical energy storage for aqueous redox flow batteries: The case of copper hexacyanoferrate
Related publications (68)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Zinc metal batteries are strongly hindered by water corrosion, as solvated zinc ions would bring the active water molecules to the electrode/electrolyte interface constantly. Herein, we report a sacrificial solvation shell to repel active water molecules f ...
Although Al-air batteries are expected to be the candidates for energy conversion systems in renewable energy market due to the higher energy density, richer reserves, and lighter mass of Al metal, the anode self-discharge is seen as a notorious issue that ...
Advanced battery electrodes require a cautious design of microscale particles with built-in nanoscale features to exploit the advantages of both micro- and nano-particles relative to their performance attributes. Herein, the dynamic behavior of nanosized S ...
Weinheim2024
,
The aqueous zinc-ion battery is promising as grid scale energy storage device, but hindered by the instable electrode/electrolyte interface. Herein, we report the lean-water ionic liquid electrolyte for aqueous zinc metal batteries. The lean-water ionic li ...
Wadsley-Roth phase titanium niobium oxides have received considerable interest as anodes for lithium ion batteries. However, the volume expansion and sluggish ion/electron transport kinetics retard its application in grid scale. Here, fast and durable lith ...
Aqueous rechargeable zinc ion batteries (ZIBs) are regarded as a promising candidates for next-generation energy storage devices but strongly hindered by the limited utilization of the zinc metal anode (below 5%) due to the active water/anion corrosion. He ...
We developed and implemented a multi-target multi-fidelity workflow to explore the chemical space of antiperovskite materials with general formula X(3)BA (X=Li, Na, Mg) and Pm-3m space group, searching for stable high-performance solid state electrolytes f ...
The energy transition towards a carbon-neutral and sustainable economy is one of the greatest challenges of the 21st century to combat global warming and pollution. The decarbonization process is affecting every sector of the economy (electricity, transpor ...
Microsupercapacitors (with footprints from -mm up to -cm scale) have attracted attention for use as electrochemical energy storage devices to power wearables, IoT, and other small microsystems due to their high power density, excellent charge/discharge rev ...
Two-dimensional (2D) transition metal carbides, and/or nitrides, so-called MXenes, have triggered intensive research interests in applications ranging from electrochemical energy storage to electronics devices. Producing these functional devices by printin ...