Reversible Pebble Games For Reducing Qubits In Hierarchical Quantum Circuit Synthesis
Related publications (41)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Quantum processors rely on classical electronic controllers to manipulate and read out the quantum state. As the performance of the quantum processor improves, non-idealities in the classical controller can become the performance bottleneck for the whole q ...
Quantum computers could efficiently solve problems that are intractable by today's computers, thus offering the possibility to radically change entire industries and revolutionize our lives. A quantum computer comprises a quantum processor operating at cry ...
This disclosure relates to quantum electronic devices for storing qubits. In particular, this disclosure relates to a quantum electronic device comprising a carbon nanosphere adapted to store a qubit represented by an electron spin and a control and readou ...
We experimentally investigate a strongly driven GaAs double quantum dot charge qubit weakly coupled to a superconducting microwave resonator. The Floquet states emerging from strong driving are probed by tracing the qubit-resonator resonance condition. In ...
Even the quantum simulation of an apparently simple molecule such as Fe2S2 requires a considerable number of qubits of the order of 106, while more complex molecules such as alanine (C3H7NO2) require about a hundred times more. In order to assess such a mu ...
Quantum computing holds the promise to achieve unprecedented computation power and to solve problems today intractable. State-of-the-art quantum processors consist of arrays of quantum bits (qubits) operating at a very low base temperature, typically a few ...
The Loschmidt echo is a measure of quantum irreversibility and is determined by the fidelity amplitude of an imperfect time-reversal protocol. Fidelity amplitude plays an important role both in the foundations of quantum mechanics and its applications, suc ...
Recent developments in quantum hardware indicate that systems featuring more than 50 physical qubits are within reach. At this scale, classical simulation will no longer be feasible and there is a possibility that such quantum devices may outperform even c ...
Today's rapid advances in the physical implementation of quantum computers demand for scalable synthesis methods in order to map practical logic designs to quantum architectures. We present a synthesis algorithm for quantum computing based on k-LUT network ...
The gate fidelity and the coherence time of a quantum bit (qubit) are important benchmarks for quantum computation. We construct a qubit using a single electron spin in an Si/SiGe quantum dot and control it electrically via an artificial spin-orbit field f ...