MATHICSE Technical Report : Dimensionality reduction of parameter-dependent problems through proper orthogonal decomposition
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Mathematical models involving multiple scales are essential for the description of physical systems. In particular, these models are important for the simulation of time-dependent phenomena, such as the heat flow, where the Laplacian contains mixed and ind ...
This paper aims at an accurate and efficient computation of effective quantities, e.g. the homogenized coefficients for approximating the solutions to partial differential equations with oscillatory coefficients. Typical multiscale methods are based on a m ...
We consider one-dimensional excited random walks (ERWs) with i.i.d. Markovian cookie stacks in the non-boundary recurrent regime. We prove that under diffusive scaling such an ERW converges in the standard Skorokhod topology to a multiple of Brownian motio ...
Multiscale problems, such as modelling flows through porous media or predicting the mechanical properties of composite materials, are of great interest in many scientific areas. Analytical models describing these phenomena are rarely available, and one mus ...
A feedback control design is proposed for stochastic systems with finite second moment which aims at maximising the region of attraction of the equilibrium point. Polynomial Chaos (PC) expansions are employed to represent the stochastic closed loop system ...
The homotopy continuation method has been widely used to compute multiple solutions of nonlinear differential equations, but the computational cost grows exponentially based on the traditional finite difference and finite element discretizations. In this w ...
Essentially nonoscillatory (ENO) and weighted ENO (WENO) methods on equidistant Cartesian grids are widely used to solve partial differential equations with discontinuous solutions. The RBF-ENO method is highly flexible in terms of geometry, but its stenci ...
A novel probabilistic numerical method for quantifying the uncertainty induced by the time integration of ordinary differential equations (ODEs) is introduced. Departing from the classical strategy to randomize ODE solvers by adding a random forcing term, ...
We introduce the "continuized" Nesterov acceleration, a close variant of Nesterov acceleration whose variables are indexed by a continuous time parameter. The two variables continuously mix following a linear ordinary differential equation and take gradien ...
A central question in numerical homogenization of partial differential equations with multiscale coefficients is the accurate computation of effective quantities, such as the homogenized coefficients. Computing homogenized coefficients requires solving loc ...