Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The Super Proton Synchrotron (SPS) at CERN is the injector of the Large Hadron Collider (LHC), the world's largest particle collider. The High-Luminosity LHC (HL-LHC) project is a major step forward in the improvement of the LHC performances and it requires a doubling of the nominal bunch intensity of the current LHC beam.
In the SPS, multi-bunch instabilities and particle losses limit the beam intensity that can be accelerated to 450 GeV/c and transferred to the LHC. Without mitigation measures, the bunch intensity threshold for longitudinal instabilities is three times below the nominal intensity of the LHC beam. Moreover, the present limited RF power is not sufficient to accelerate beams with intensities well above nominal without substantial particle losses and a reduction of the RF voltage available for the beam at the flat top energy.
The SPS will undergo significant upgrades but they may not be sufficient to ensure the stability of the HL-LHC beam. The objectives of this doctoral research are to study the longitudinal intensity limitations of the LHC proton beam in the SPS and to find possible mitigation measures to ensure the beam stability and quality at HL-LHC intensity.
Beam measurements and particle simulations are used in conjunction with analytical estimations to study the multi-bunch instabilities during the cycle in the SPS. This work attempts to identify the main sources of instabilities and beam quality degradation. Possible scenarios of mitigation measures are investigated to explore the future beam parameters achievable after upgrades. The effects on beam stability of the foreseen RF upgrade, the double RF operation and the reduction of various longitudinal beam-coupling impedances are analysed in detail. The scenario of a lower-harmonic RF system in the SPS, for particle losses reduction, is also studied.
Qian Wang, Varun Sharma, Konstantin Androsov, Xin Chen, Davide Di Croce, Rakesh Chawla, Tian Cheng, Werner Lustermann, Andromachi Tsirou, Andrea Rizzi, Jessica Prisciandaro, David Vannerom, Albert Perez, Alessandro Caratelli, François Robert, Davide Ceresa, Chun Xia, Yong Yang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Muhammad Ahmad, Francesco Fiori, Kai Yi, Jing Li, Hui Wang, Stefano Michelis, François Bianchi, David Parker
Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Arvind Shah, Rakesh Chawla, Chao Wang, João Miguel das Neves Duarte, Tagir Aushev, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Jessica Prisciandaro, Peter Hansen, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Kun Shi, Wei Shi, Abhisek Datta, Wei Sun, Jian Zhao, Thomas Berger, Federica Legger, Doohyun Kim, Bertrand François, Bandeep Singh, Ji Hyun Kim, Donghyun Kim, Dipanwita Dutta, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Yi Wang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Matthias Weber, Muhammad Shoaib, Milos Dordevic, Vineet Kumar, Vladimir Petrov, Francesco Fiori, Quentin Python, Meng Xiao, Sourav Sen, Viktor Khristenko, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Zhen Liu, Hui Wang, Seungkyu Ha, Maren Tabea Meinhard, Giorgia Rauco, Ali Harb, Benjamin William Allen, Long Wang, Pratyush Das, Miao Hu, Anton Petrov, Xin Gao, Chen Chen, Valérie Scheurer, Giovanni Mocellin, Muhammad Ansar Iqbal, Lukas Layer