Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Hyperbolic partial differential equations (PDEs) are mathematical models of wave phenomena, with applications in a wide range of scientific and engineering fields such as electromagnetic radiation, geosciences, fluid and solid mechanics, aeroacoustics, and ...
We consider the numerical approximation of high order Partial Differential Equations (PDEs) defined on surfaces in the three dimensional space, with particular emphasis on closed surfaces. We consider computational domains that can be represented by B-spli ...
On the identity component of the universal Teichmuller space endowed with the Takhtajan-Teo topology, the geodesics of the Weil Petersson metric are shown to exist for all time. This component is naturally a subgroup of the quasisymmetric homeomorphisms of ...
We propose a strategy for the systematic construction of the mimetic inner products on cochain spaces for the numerical approximation of partial differential equations on unstructured polygonal and polyhedral meshes. The mimetic inner products are locally ...
The goal of this report is to study the method introduced by Adomian known as the Adomian Decomposition Method (ADM), which is used to find an approximate solution to nonlinear partial differential equations (PDEs) as a series expansion involving the recur ...
We investigate a finite element approximation of an initial boundary value problem associated with parabolic Partial Differential Equations endowed with mixed time varying boundary conditions, switching from essential to natural and viceversa. The switchin ...
In this project we numerically simulate electrophysiological models for cardiac applications by means of Isogeometric Analysis. Specifically, we aim at understanding the advantages of using high order continuous NURBS (Non-UniformRational B-Splines) basis ...
In this project report, we first present the application of the finite elements method to the numerical approximation of elliptic and parabolic PDEs over two-dimensional domains. We then consider the theory and numerical approximation of optimal control pr ...
We consider elliptic PDEs (partial differential equations) in the framework of isogeometric analysis, i.e., we treat the physical domain by means of a B-spline or NURBS mapping which we assume to be regular. The numerical solution of the PDE is computed by ...
In this paper, we consider the numerical approximation of high order Partial Differential Equations (PDEs) by means of NURBS-based Isogeometric Analysis (IGA) in the framework of the Galerkin method, for which global smooth basis functions with degree of c ...