Water gasWater gas is a kind of fuel gas, a mixture of carbon monoxide and hydrogen. It is produced by "alternately hot blowing a fuel layer [coke] with air and gasifying it with steam". The caloric yield of this is about 10% of a modern syngas plant. Further making this technology unattractive, its precursor coke is expensive, whereas syngas uses cheaper precursor, mainly methane from natural gas. Synthesis gas is made by passing steam over a red-hot carbon fuel such as coke: (ΔH = +131 kJ/mol) The reaction is endothermic, so the fuel must be continually re-heated to maintain the reaction.
Steam reformingSteam reforming or steam methane reforming (SMR) is a method for producing syngas (hydrogen and carbon monoxide) by reaction of hydrocarbons with water. Commonly natural gas is the feedstock. The main purpose of this technology is hydrogen production. The reaction is represented by this equilibrium: CH4 + H2O CO + 3 H2 The reaction is strongly endothermic (ΔHSR = 206 kJ/mol). Hydrogen produced by steam reforming is termed 'grey hydrogen' when the waste carbon monoxide is released to the atmosphere and 'blue hydrogen' when the carbon monoxide is (mostly) captured and stored geologically - see carbon capture and storage.
Solid oxide fuel cellA solid oxide fuel cell (or SOFC) is an electrochemical conversion device that produces electricity directly from oxidizing a fuel. Fuel cells are characterized by their electrolyte material; the SOFC has a solid oxide or ceramic electrolyte. Advantages of this class of fuel cells include high combined heat and power efficiency, long-term stability, fuel flexibility, low emissions, and relatively low cost. The largest disadvantage is the high operating temperature which results in longer start-up times and mechanical and chemical compatibility issues.
Water–gas shift reactionThe water–gas shift reaction (WGSR) describes the reaction of carbon monoxide and water vapor to form carbon dioxide and hydrogen: CO + H2O CO2 + H2 The water gas shift reaction was discovered by Italian physicist Felice Fontana in 1780. It was not until much later that the industrial value of this reaction was realized. Before the early 20th century, hydrogen was obtained by reacting steam under high pressure with iron to produce iron oxide and hydrogen.
Underground coal gasificationUnderground coal gasification (UCG) is an industrial process which converts coal into product gas. UCG is an in-situ gasification process, carried out in non-mined coal seams using injection of oxidants and steam. The product gas is brought to the surface through production wells drilled from the surface. The predominant product gases are methane, hydrogen, carbon monoxide and carbon dioxide. Ratios vary depending upon formation pressure, depth of coal and oxidant balance. Gas output may be combusted for electricity production.
Issues relating to biofuelsThere are various social, economic, environmental and technical issues with biofuel production and use, which have been discussed in the popular media and scientific journals. These include: the effect of moderating oil prices, the "food vs fuel" debate, poverty reduction potential, carbon emissions levels, sustainable biofuel production, deforestation and soil erosion, loss of biodiversity, effect on water resources, the possible modifications necessary to run the engine on biofuel, as well as energy balance and efficiency.
Air separationAn air separation plant separates atmospheric air into its primary components, typically nitrogen and oxygen, and sometimes also argon and other rare inert gases. The most common method for air separation is fractional distillation. Cryogenic air separation units (ASUs) are built to provide nitrogen or oxygen and often co-produce argon. Other methods such as membrane, pressure swing adsorption (PSA) and vacuum pressure swing adsorption (VPSA) are commercially used to separate a single component from ordinary air.
Coal pollution mitigationCoal pollution mitigation, sometimes called clean coal, is a series of systems and technologies that seek to mitigate the health and environmental impact of coal; in particular air pollution from coal-fired power stations, and from coal burnt by heavy industry. The primary focus is on sulfur dioxide () and nitrogen oxides (), the most important gases which caused acid rain; and particulates which cause visible air pollution, illness and premature deaths. can be removed by flue-gas desulfurization and by selective catalytic reduction (SCR).
Greenhouse gas emissionsGreenhouse gas emissions (abbreviated as GHG emissions) from human activities strengthen the greenhouse effect, contributing to climate change. Carbon dioxide (), from burning fossil fuels such as coal, oil, and natural gas, is one of the most important factors in causing climate change. The largest emitters are China followed by the US, although the United States has higher emissions per capita. The main producers fueling the emissions globally are large oil and gas companies.
Coal liquefactionCoal liquefaction is a process of converting coal into liquid hydrocarbons: liquid fuels and petrochemicals. This process is often known as "Coal to X" or "Carbon to X", where X can be many different hydrocarbon-based products. However, the most common process chain is "Coal to Liquid Fuels" (CTL). Coal liquefaction originally was developed at the beginning of the 20th century. The best-known CTL process is Fischer–Tropsch synthesis (FT), named after the inventors Franz Fischer and Hans Tropsch from the Kaiser Wilhelm Institute in the 1920s.