Publication

MATHICSE Technical Report : Multilevel tensor approximation of PDEs with random data

Abstract

In this paper, we introduce and analyze a new low-rank multilevel strategy for the solution of random diffusion problems. Using a standard stochastic collocation scheme, we first approximate the infinite dimensional random problem by a deterministic parameter-dependent problem on a high-dimensional parameter domain. Given a hier-archy of finite element discretizations for the spatial approximation, we make use of a multilevel framework in which we consider the differences of the solution on two consecutive finite element levels in the collocation points. We then address the approximation ofthese high-dimensional differences by adaptive low-rank tensor techniques. This allows to equilibrate the error on all levels by exploiting analytic and algebraic properties of thesolution at the same time. We arrive at an explicit representation in a low-rank tensor format of the approximate solution on the entire parameter domain, which can be used for, e.g., the direct and cheap computation of statistics. Numerical results are provided in order to illustrate the approach.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Numerical stability
In the mathematical subfield of numerical analysis, numerical stability is a generally desirable property of numerical algorithms. The precise definition of stability depends on the context. One is numerical linear algebra and the other is algorithms for solving ordinary and partial differential equations by discrete approximation. In numerical linear algebra, the principal concern is instabilities caused by proximity to singularities of various kinds, such as very small or nearly colliding eigenvalues.
Numerical analysis
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts.
Randomness
In common usage, randomness is the apparent or actual lack of definite pattern or predictability in information. A random sequence of events, symbols or steps often has no order and does not follow an intelligible pattern or combination. Individual random events are, by definition, unpredictable, but if the probability distribution is known, the frequency of different outcomes over repeated events (or "trials") is predictable. For example, when throwing two dice, the outcome of any particular roll is unpredictable, but a sum of 7 will tend to occur twice as often as 4.
Show more
Related publications (50)

Gradient-based optimisation of the conditional-value-at-risk using the multi-level Monte Carlo method

Fabio Nobile, Sundar Subramaniam Ganesh

In this work, we tackle the problem of minimising the Conditional-Value-at-Risk (CVaR) of output quantities of complex differential models with random input data, using gradient-based approaches in combination with the Multi-Level Monte Carlo (MLMC) method ...
2022

Optimal Matching of Random Parts

Thomas Alois Weber

This paper examines the minimization of the cost for an expected random production output, given an assembly of finished goods from two random inputs, matched in two categories. We describe the optimal input portfolio, first using the standard normal appro ...
2022

Convergence of random walks with Markovian cookie stacks to Brownian motion perturbed at extrema

Thomas Mountford

We consider one-dimensional excited random walks (ERWs) with i.i.d. Markovian cookie stacks in the non-boundary recurrent regime. We prove that under diffusive scaling such an ERW converges in the standard Skorokhod topology to a multiple of Brownian motio ...
2021
Show more
Related MOOCs (10)
Numerical Analysis for Engineers
Ce cours contient les 7 premiers chapitres d'un cours d'analyse numérique donné aux étudiants bachelor de l'EPFL. Des outils de base sont décrits dans les chapitres 1 à 5. La résolution numérique d'éq
Numerical Analysis for Engineers
Ce cours contient les 7 premiers chapitres d'un cours d'analyse numérique donné aux étudiants bachelor de l'EPFL. Des outils de base sont décrits dans les chapitres 1 à 5. La résolution numérique d'éq
Numerical Analysis for Engineers
Ce cours contient les 7 premiers chapitres d'un cours d'analyse numérique donné aux étudiants bachelor de l'EPFL. Des outils de base sont décrits dans les chapitres 1 à 5. La résolution numérique d'éq
Show more