A wall-aligned grid generator for non-linear simulations of MHD instabilities in tokamak plasmas
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A key issue for steady-state tokamak operation is to determine the edge conditions that are compatible both with good core confinement and with the power handling and plasma exhaust capabilities of the plasma facing components (PFCs) and divertor systems. ...
The eigenmode spectrum is a fundamental starting point for the analysis of plasma stability and the onset of turbulence, but the characterization of the spectrum even for the simplest plasma model, ideal magnetohydrodynamics (MHD), is not fully understood. ...
The ultimate goal of magnetic confinement fusion research is to develop an electricity producing power plant based on thermonuclear fusion reactions. Among the most promising magnetic confinement devices, as leading concepts for future power plants, are to ...
The understanding and predictive capability of transport physics and plasma confinement is reviewed from the perspective of achieving reactor-scale burning plasmas in the ITER tokamak, for both core and edge plasma regions. Very considerable progress has b ...
Magnetohydrodynamic (MHD) instabilities and plasma rotation have various impacts on particle and thermal transport in toroidal plasmas. MHD instabilities degrade the confinement, limit the maximum achievable plasma pressure, and can lead to plasma disrupti ...
Progress in the area of MHD stability and disruptions, since the publication of the 1999 ITER Physics Basis document (1999 Nucl. Fusion 39 2137-2664), is reviewed. Recent theoretical and experimental research has made important advances in both understandi ...
Improvement of the spatial resolution of the TCV Thomson scattering system has permitted measurements of the pedestal height and gradient of electron density and temperature profiles near; the plasma boundary during ELMy H-mode. Measured profiles were fitt ...
This paper reports on the first demonstration of electron Bernsteinwave heating (EBWH) by double mode conversion from ordinary (O-) to Bernstein (B-) via the extraordinary (X-) mode in an over-dense tokamak plasma, using low field side launch, achieved in ...
A single chord, single processing chain, hybrid (analog/digital) pulse height analysis diagnostic has been developed for the TCV tokamak, aiming to provide the evolution of the plasma electron temperature with a software selectable minimum temporal resolut ...
In the first part of this paper, the status of the 140-GHz continuously operated gyrotrons with an output power of I MW for the stellarator Wendelstein 7-X will be described. With the first series tube, an output power of 1000 kW has been achieved in short ...