**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Optimal Age over Erasure Channels

Abstract

Given a source that produces a letter every T-s seconds and an erasure channel that can be used every T-c seconds, we ask what is the coding strategy that minimizes the time-average "age of information" that an observer of the channel output incurs. We will see that one has to distinguish the cases when the source and channel-input alphabets have equal or different size. In the first case, we show that a trivial coding strategy is optimal and a closed form expression for the age may be derived. In the second, we use random coding argument to bound the average age and show that the average age achieved using random codes converges to the optimal average age as the source alphabet becomes large.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (34)

Related MOOCs (2)

Related publications (37)

Binary erasure channel

In coding theory and information theory, a binary erasure channel (BEC) is a communications channel model. A transmitter sends a bit (a zero or a one), and the receiver either receives the bit correctly, or with some probability receives a message that the bit was not received ("erased") . A binary erasure channel with erasure probability is a channel with binary input, ternary output, and probability of erasure . That is, let be the transmitted random variable with alphabet .

Channel capacity

Channel capacity, in electrical engineering, computer science, and information theory, is the tight upper bound on the rate at which information can be reliably transmitted over a communication channel. Following the terms of the noisy-channel coding theorem, the channel capacity of a given channel is the highest information rate (in units of information per unit time) that can be achieved with arbitrarily small error probability. Information theory, developed by Claude E.

Noisy-channel coding theorem

In information theory, the noisy-channel coding theorem (sometimes Shannon's theorem or Shannon's limit), establishes that for any given degree of noise contamination of a communication channel, it is possible to communicate discrete data (digital information) nearly error-free up to a computable maximum rate through the channel. This result was presented by Claude Shannon in 1948 and was based in part on earlier work and ideas of Harry Nyquist and Ralph Hartley.

Information, Calcul, Communication: Introduction à la pensée informatique

Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d

Information, Calcul, Communication: Introduction à la pensée informatique

Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d

Information theory has allowed us to determine the fundamental limit of various communication and algorithmic problems, e.g., the channel coding problem, the compression problem, and the hypothesis testing problem. In this work, we revisit the assumptions ...

The beginning of 21st century provided us with many answers about how to reach the channel capacity. Polarization and spatial coupling are two techniques for achieving the capacity of binary memoryless symmetric channels under low-complexity decoding algor ...

, ,

Previous works on age of information and erasure channels have dealt with specific models and computed the average age or average peak age for certain settings. In this paper, given a source that produces a letter every T-s seconds and an erasure channel t ...