Unexpected large evasion fluxes of carbon dioxide from turbulent streams draining the world’s mountains
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Electron transfer reactions are central to the transformation of energy in the environment and play an important role in biogeochemical element cycling. In soils, one of the main drivers of carbon cycling is the activity of organisms that utilize the energ ...
River networks play a crucial role in the global carbon cycle, as relevant sources of carbon dioxide (CO2) to the atmosphere. Advancements in high-frequency monitoring in aquatic environments have enabled measurement of dissolved CO2 concentration at tempo ...
Forest soils harbor hyper-diverse microbial communities which fundamentally regulate carbon and nutrient cycling across the globe. Directly testing hypotheses on how microbiome diversity is linked to forest carbon storage has been difficult, due to a lack ...
High-mountain ecosystems are experiencing acute effects of climate change, most visibly through glacier recession and the greening of the terrestrial environment. The streams draining these landscapes are affected by these shifts, integrating hydrologic, g ...
Autotrophic nitrate-reducing Fe(II)-oxidizing (NRFeOx) microorganisms fix CO2 and oxidize Fe(II) coupled to denitrification, influencing carbon, iron, and nitrogen cycles in pH-neutral, anoxic environments. However, the distribution of electrons from Fe(II ...
River networks represent the largest biogeochemical nexus between the continents, ocean and atmosphere. Our current understanding of the role of rivers in the global carbon cycle remains limited, which makes it difficult to predict how global change may al ...
The eco-morphodynamic activity of large tropical rivers in South and Central America is analyzed to quantify the carbon flux from riparian vegetation to inland waters. We carried out a multi-temporal analysis of satellite data for all the largest rivers in ...
High-mountain ecosystems are experiencing acute effects of climate change, most visibly through glacier recession and the ‘greening’ of the terrestrial environment. The streams draining these landscapes are affected by these shifts, integrating hydrologic, ...
Carbon dioxide (CO2) evasion from inland waters is an important component of the global carbon cycle. However, it remains unknown how global change affects CO2 emissions over longer time scales. Here, we present seasonal and annual fluxes of CO2 emissions ...
Carbon dioxide (CO2) emissions to the atmosphere from running waters are estimated to be four times greater than the total carbon (C) flux to the oceans. However, these fluxes remain poorly constrained because of substantial spatial and temporal variabilit ...