Publication

Detection of Age-Induced Makeup Attacks on Face Recognition Systems Using Multi-Layer Deep Features

Abstract

Makeup is a simple and easy instrument that can alter the appearance of a person’s face, and hence, create a presentation attack on face recognition (FR) systems. These attacks, especially the ones mimicking ageing, are difficult to detect due to their close resemblance with genuine (non-makeup) appearances. Makeups can also degrade the performance of recognition systems and of various algorithms that use human face as an input. The detection of facial makeups is an effective prohibitory measure to minimize these problems. This work proposes a deep learning-based presentation attack detection (PAD) method to identify facial makeups. We propose the use of a convolutional neural network (CNN) to extract features that can distinguish between presentations with age-induced facial makeups (attacks), and those without makeup (bona-fide). These feature descriptors, based on shape and texture cues, are constructed from multiple intermediate layers of a CNN. We introduce a new dataset AIM (Age Induced Makeups) consisting of 200+ video presentations of old-age makeups and bona-fide, each. Our experiments indicate makeups in AIM result in 14% decrease in the median matching scores of a recent CNN-based FR system. We demonstrate accuracy of the proposed PAD method where 93% presentations in the AIM dataset are correctly classified. In additional testing, it also outperforms existing methods of detection of generic makeups. A simple score-level fusion, performed on the classification scores of shape- and texture-based features, can further improve the accuracy of the proposed makeup detector.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Facial recognition system
A facial recognition system is a technology potentially capable of matching a human face from a or a video frame against a database of faces. Such a system is typically employed to authenticate users through ID verification services, and works by pinpointing and measuring facial features from a given image. Development began on similar systems in the 1960s, beginning as a form of computer application. Since their inception, facial recognition systems have seen wider uses in recent times on smartphones and in other forms of technology, such as robotics.
Convolutional neural network
Convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns feature engineering by itself via filters (or kernel) optimization. Vanishing gradients and exploding gradients, seen during backpropagation in earlier neural networks, are prevented by using regularized weights over fewer connections. For example, for each neuron in the fully-connected layer 10,000 weights would be required for processing an image sized 100 × 100 pixels.
Pattern recognition
Pattern recognition is the automated recognition of patterns and regularities in data. While similar, pattern recognition (PR) is not to be confused with pattern machines (PM) which may possess (PR) capabilities but their primary function is to distinguish and create emergent pattern. PR has applications in statistical data analysis, signal processing, , information retrieval, bioinformatics, data compression, computer graphics and machine learning.
Show more
Related publications (71)

Recognizing distant faces

Lukas Vogelsang, Marin Vogelsang

As an 'early alerting' sense, one of the primary tasks for the human visual system is to recognize distant objects. In the specific context of facial identification, this ecologically important task has received surprisingly little attention. Most studies ...
PERGAMON-ELSEVIER SCIENCE LTD2023

Towards Visual Saliency Explanations of Face Verification

Touradj Ebrahimi, Yuhang Lu, Zewei Xu

In the past years, deep convolutional neural networks have been pushing the frontier of face recognition (FR) techniques in both verification and identification scenarios. Despite the high accuracy, they are often criticized for lacking explainability. The ...
2023

Discriminative Deep Feature Visualization for Explainable Face Recognition

Touradj Ebrahimi, Yuhang Lu, Zewei Xu

Despite the huge success of deep convolutional neural networks in face recognition (FR) tasks, current methods lack explainability for their predictions because of their ``black-box'' nature. In recent years, studies have been carried out to give an interp ...
2023
Show more
Related MOOCs (8)
Introduction to Programming in C++
Le cours suivi propose une initiation aux concepts de base de la programmation impérative tels que : variables, expressions, structures de contrôle, fonctions/méthodes, en les illustrant dans la synta
Introduction to Object-Oriented Programming in C++
Le cours suivi propose une introduction aux concepts de base de la programmation orientée objet tels que : encapsulation et abstraction, classes/objets, attributs/méthodes, héritage, polymorphisme, ..
Introduction to Programming in C++
Ce cours initie à la programmation en utilisant le langage C++. Il ne présuppose pas de connaissance préalable. Les aspects plus avancés (programmation orientée objet) sont donnés dans un cours suivan
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.