Language Independent Query by Example Spoken Term Detection
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this supplementary material, we present the details of the neural network architecture and training settings used in all our experiments. This holds for all experiments presented in the main paper as well as in this supplementary material. We also show ...
Over the past few years, there have been fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. The amount of annotated data drastically increased and supervised deep discriminative models exceed ...
Deep convolutional neural networks have recently emerged as a state-of-the art tool in detection of seizures. Such models offer the ability to extract complex nonlinear representations of an electroencephalogram (EEG) signal which can improve accuracy over ...
Sign language technology, unlike spoken language technology, is an emerging area of research. Sign language technologies can help in bridging the gap between the Deaf community and the hearing community. One such computer-aided technology is sign language ...
In this paper, we trace the history of neural networks applied to natural language understanding tasks, and identify key contributions which the nature of language has made to the development of neural network architectures. We focus on the importance of v ...
State-of-the-art acoustic models for Automatic Speech Recognition (ASR) are based on Hidden Markov Models (HMM) and Deep Neural Networks (DNN) and often require thousands of hours of transcribed speech data during training. Therefore, building multilingual ...
The large capacity of neural networks enables them to learn complex functions. To avoid overfitting, networks however require a lot of training data that can be expensive and time-consuming to collect. A common practical approach to attenuate overfitting i ...
With improved insulation of building envelopes and the use of low-temperature space heating systems, the share of energy use for domestic hot water (DHW) production in buildings has increased significantly, and nearly become the most energy-expensive servi ...
Stereo matching aims to perceive the 3D geometric configuration of scenes and facilitates a variety of computer vision in advanced driver assistance systems (ADAS) applications. Recently, deep convolutional neural networks (CNNs) have shown dramatic perfor ...
Time series classification (TSC) is an important and challenging problem in machine learning. In this work, we tackle the problem of TSC by first applying a Bidirectional Encoder Representations from Transformers (BERT) model, and then applying a convoluti ...