**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Pricing interest rate, dividend, and equity risk

Abstract

This thesis studies the valuation and hedging of financial derivatives, which is fundamental for trading and risk-management operations in financial institutions. The three chapters in this thesis deal with derivatives whose payoffs are linked to interest rates, equity prices, and dividend payments.

The first chapter introduces a flexible framework based on polynomial jump-diffusions (PJD) to jointly price the term structures of dividends and interest rates. Prices for dividend futures, bonds, and the dividend paying stock are given in closed form. Option prices are approximated efficiently using a moment matching technique based on the principle of maximum entropy. An extensive calibration exercise shows that a parsimonious model specification has a good fit with Euribor interest rate swaps and swaptions, Euro Stoxx 50 index dividend futures and dividend options, and Euro Stoxx 50 index options.

The second chapter revisits the problem of pricing a continuously sampled arithmetic Asian option in the classical Black-Scholes setting. An identity in law links the integrated stock price to a one-dimensional polynomial diffusion, a particular instance of the PJD encountered in the first chapter. The Asian option price is approximated by a series expansion based on polynomials that are orthogonal with respect to the log-normal distribution. All terms in the series are fully explicit and no numerical integration nor any special functions are involved. The moment indeterminacy of the log-normal distribution introduces an asymptotic bias in the series, however numerical experiments show that the bias can safely be ignored in practice.

The last chapter presents a non-parametric method to construct a maximally smooth discount curve from observed market prices of linear interest rate products such as swaps, forward rate agreements, or coupon bonds. The discount curve is given in closed form and only requires basic linear algebra operations. The method is illustrated with several practical examples.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related publications (9)

Loading

Loading

Loading

Related concepts (27)

Interest rate

An interest rate is the amount of interest due per period, as a proportion of the amount lent, deposited, or borrowed (called the principal sum). The total interest on an amount lent or borrowed depe

Black–Scholes model

The Black–Scholes ˌblæk_ˈʃoʊlz or Black–Scholes–Merton model is a mathematical model for the dynamics of a financial market containing derivative investment instruments, using various underlying assu

Price

A price is the (usually not negative) quantity of payment or compensation expected, required, or given by one party to another in return for goods or services. In some situations, the price of pr

,

Over the last decade, dividends have become a standalone asset class instead of a mere side product of an equity investment. We introduce a framework based on polynomial jump-diffusions to jointly price the term structures of dividends and interest rates. Prices for dividend futures, bonds, and the dividend paying stock are given in closed form. We present an efficient moment based approximation method for option pricing. In a calibration exercise we show that a parsimonious model specification has a good fit with Euribor interest rate swaps and swaptions, Euro Stoxx 50 Index dividend futures and dividend options, and Euro Stoxx 50 Index options.

In this paper we derive a series expansion for the price of a continuously sampled arithmetic Asian option in the Black-Scholes setting. The expansion is based on polynomials that are orthogonal with respect to the log-normal distribution. All terms in the series are fully explicit and no numerical integration nor any special functions are involved. We provide sufficient conditions to guarantee convergence of the series. The moment indeterminacy of the log-normal distribution introduces an asymptotic bias in the series, however we show numerically that the bias can safely be ignored in practice.

We develop a tractable and flexible stochastic volatility multifactor model of the term structure of interest rates. It features unspanned stochastic volatility factors, correlation between innovations to forward rates and their volatilities, quasi-analytical prices of zero coupon bond options, and dynamics of the forward rate curve, under both the actual and risk-neutral measures, in terms of a finite-dimensional affine state vector. The model has a very good fit to an extensive panel data set of interest rates, swaptions, and caps. In particular, the model matches the implied cap skews and the dynamics of implied volatilities.