Robust Discriminative Clustering with Sparse Regularizers
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Linear subspace models are pervasive in computational sciences and particularly used for large datasets which are often incomplete due to privacy issues or sampling constraints. Therefore, a critical problem is developing an efficient algorithm for detecti ...
Collective tunneling is a ubiquitous phenomenon in finite-size spin clusters that shows up in systems as diverse as molecular magnets or spin clusters adsorbed at surfaces. The basic problem we explore is to understand how small flipping terms can cooperat ...
Data is pervasive in today's world and has actually been for quite some time. With the increasing volume of data to process, there is a need for faster and at least as accurate techniques than what we already have. In particular, the last decade recorded t ...
We propose two new alternating direction methods to solve “fully” nonsmooth constrained convex problems. Our algorithms have the best known worst-case iteration-complexity guarantee under mild assumptions for both the objective residual and feasibility gap ...
The problem of clustering in urban traffic networks has been mainly studied in static framework by considering traffic conditions at a given time. Nevertheless, it is important to underline that traffic is a strongly time-variant process and it needs to be ...
Motivation: Unbiased clustering methods are needed to analyze growing numbers of complex data sets. Currently available clustering methods often depend on parameters that are set by the user, they lack stability, and are not applicable to small data sets. ...
Visualizing high-dimensional data has been a focus in data analysis communities for decades, which has led to the design of many algorithms, some of which are now considered references (such as t-SNE for example). In our era of overwhelming data volumes, t ...
The amount of data that we produce and consume is larger than it has been at any point in the history of mankind, and it keeps growing exponentially. All this information, gathered in overwhelming volumes, often comes with two problematic characteristics: ...
Despite the importance of understanding the historical dynamics of ecosystem services (ES), littleresearch has focused on a historical, spatially explicit, assessment of ES supply. This research is aimed at understanding the spatial patterns and potential ...
Clustering is a method for discovering structure in data, widely used across many scientific disciplines. The two main clustering problems this dissertation considers are K-means and K-medoids. These are NP-hard problems in the number of samples and cluste ...