Gen-Oja: A Simple and Efficient Algorithm for Streaming Generalized Eigenvector Computation
Related publications (33)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Stochastic models that describe interacting processes, such as stochastic automata networks, feature a dimensionality that grows exponentially with the number of processes. This state space explosion severely impairs the use of standard methods for the num ...
Algorithms for distributed agreement are a powerful means for formulating distributed versions of existing centralized algorithms. We present a toolkit for this task and show how it can be used systematically to design fully distributed algorithms for stat ...
We introduce a general distributional framework that results in a unifying description and characterization of a rich variety of continuous-time stochastic processes. The cornerstone of our approach is an innovation model that is driven by some generalized ...
Falls are common in the elderly, and potentially result in injury and disability. Thus, preventing falls as soon as possible in older adults is a public health priority, yet there is no specific marker that is predictive of the first fall onset. We hypothe ...
We revisit the problem of extending the notion of principal component analysis (PCA) to multivariate datasets that satisfy nonlinear constraints, therefore lying on Riemannian manifolds. Our aim is to determine curves on the manifold that retain their cano ...
In this paper we propose a novel dimensionality reduction method that is based on successive Laplacian SVM projections in orthogonal deflated subspaces. The proposed method, called Laplacian Support Vector Analysis, produces projection vectors, which captu ...
Functional near-infrared spectroscopy (fNIRS) is a noninvasive optical method that measures cortical activity based on hemodynamics in the brain. Physiological signals (biosignals), such as blood pressure and respiration, are known to appear in cortical fN ...
Principal Component Analysis (PCA) has been widely used for manifold description and dimensionality reduction. Performance of PCA is however hampered when data exhibits nonlinear feature relations. In this work, we propose a new framework for manifold lear ...
In this paper, we study deterministic limits of Markov processes having discontinuous drifts. While most results assume that the limiting dynamics is continuous, we show that these conditions are not necessary to prove convergence to a deterministic system ...
Conventional linear subspace learning methods like principal component analysis (PCA), linear discriminant analysis (LDA) derive subspaces from the whole data set. These approaches have limitations in the sense that they are linear while the data distribut ...
Institute of Electrical and Electronics Engineers2011