Publication

Methods and apparatuses for encoding and decoding digital images or video streams

Abstract

The invention relates to a method and an apparatus for encoding and/or decoding digital images, wherein said encoding apparatus (1100) comprises processing means (1110) configured for determining weights of a graph related to an image by minimizing a cost function, transforming said weights through a graph Fourier transform, quantizing the transformed weights, computing transformed coefficients through a graph Fourier transform of a graph having said the transformed weights as weights, de-quantizing the quantized transformed weights, computing a reconstructed image through an inverse graph Fourier transform on the basis of the de-quantized transformed weights, computing a distortion cost on the basis of the reconstructed image and the original image, generating a final encoded image on the basis of said distortion cost.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Fast Fourier transform
A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT). Fourier analysis converts a signal from its original domain (often time or space) to a representation in the frequency domain and vice versa. The DFT is obtained by decomposing a sequence of values into components of different frequencies. This operation is useful in many fields, but computing it directly from the definition is often too slow to be practical.
Fourier transform
In physics and mathematics, the Fourier transform (FT) is a transform that converts a function into a form that describes the frequencies present in the original function. The output of the transform is a complex-valued function of frequency. The term Fourier transform refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made the Fourier transform is sometimes called the frequency domain representation of the original function.
Graph theory
In mathematics, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or points) which are connected by edges (also called links or lines). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics.
Show more
Related publications (63)

Correlation of powers of Hüsler-Reiss vectors and Brown-Resnick fields, and application to insured wind losses

Erwan Fabrice Koch

H & uuml;sler-Reiss vectors and Brown-Resnick fields are popular models in multivariate and spatial extreme-value theory, respectively, and are widely used in applications. We provide analytical formulas for the correlation between powers of the components ...
Springer2024

A full characterization of invariant embeddability of unimodular planar graphs

Laszlo Marton Toth

When can a unimodular random planar graph be drawn in the Euclidean or the hyperbolic plane in a way that the distribution of the random drawing is isometry-invariant? This question was answered for one-ended unimodular graphs in Benjamini and Timar, using ...
WILEY2023

Equivariant Neural Architectures for Representing and Generating Graphs

Clément Arthur Yvon Vignac

Graph machine learning offers a powerful framework with natural applications in scientific fields such as chemistry, biology and material sciences. By representing data as a graph, we encode the prior knowledge that the data is composed of a set of entitie ...
EPFL2023
Show more
Related MOOCs (23)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.