Byzantine tolerant gradient descent for distributed machine learning with adversaries
Related publications (44)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this work we investigate stochastic non-convex optimization problems wherethe objective is an expectation over smooth loss functions, and the goal is to find an approximate stationary point. The most popular approach to handling such problems is varianc ...
Theoretical and computational approaches to the study of materials and molecules have, over the last few decades, progressed at an exponential rate. Yet, the possibility of producing numerical predictions that are on par with experimental measurements is t ...
Driven by the need to solve increasingly complex optimization problems in signal processing and machine learning, there has been increasing interest in understanding the behavior of gradient-descent algorithms in non-convex environments. Most available wor ...
The assessment of the risk maps for the seismic vulnerability at large scale is based on the vulnerability of each building. In order to determine these vulnerabilities, it is first required to assign to each building its construction class. The constructi ...
This paper considers the Byzantine fault-tolerance problem in distributed stochastic gradient descent (D-SGD) method - a popular algorithm for distributed multi-agent machine learning. In this problem, each agent samples data points independently from a ce ...
We consider online convex optimization with a zero-order oracle feedback. In particular, the decision maker does not know the explicit representation of the time-varying cost functions, or their gradients. At each time step, she observes the value of the c ...
In this paper, we present a multilevel Monte Carlo (MLMC) version of the Stochastic Gradient (SG) method for optimization under uncertainty, in order to tackle Optimal Control Problems (OCP) where the constraints are described in the form of PDEs with rand ...
The utilization of online stochastic algorithms is popular in large-scale learning settings due to their ability to compute updates on the fly, without the need to store and process data in large batches. When a constant step-size is used, these algorithms ...
The present invention concerns computer-implemented methods for training a machine learning model using Stochastic Gradient Descent, SGD. In one embodiment, the method is performed by a first computer in a distributed computing environment and comprises pe ...
Federated learning is a useful framework for centralized learning from distributed data under practical considerations of heterogeneity, asynchrony, and privacy. Federated architectures are frequently deployed in deep learning settings, which generally giv ...